Articles | Volume 15, issue 8
The Cryosphere, 15, 4135–4143, 2021
https://doi.org/10.5194/tc-15-4135-2021
The Cryosphere, 15, 4135–4143, 2021
https://doi.org/10.5194/tc-15-4135-2021

Research article 30 Aug 2021

Research article | 30 Aug 2021

Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core

Daniela Festi et al.

Related authors

Anthropogenic and climate signals in late-Holocene peat layers of an ombrotrophic bog in the Styrian Enns valley (Austrian Alps)
Wolfgang Knierzinger, Ruth Drescher-Schneider, Klaus-Holger Knorr, Simon Drollinger, Andreas Limbeck, Lukas Brunnbauer, Felix Horak, Daniela Festi, and Michael Wagreich
E&G Quaternary Sci. J., 69, 121–137, https://doi.org/10.5194/egqsj-69-121-2020,https://doi.org/10.5194/egqsj-69-121-2020, 2020
Short summary
Linking pollen deposition and snow accumulation on the Alto dell'Ortles glacier (South Tyrol, Italy) for sub-seasonal dating of a firn temperate core
Daniela Festi, Luca Carturan, Werner Kofler, Giancarlo dalla Fontana, Fabrizio de Blasi, Federico Cazorzi, Edith Bucher, Volkmar Mair, Paolo Gabrielli, and Klaus Oeggl
The Cryosphere, 11, 937–948, https://doi.org/10.5194/tc-11-937-2017,https://doi.org/10.5194/tc-11-937-2017, 2017
Short summary
Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016,https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021,https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
A new automatic approach for extracting glacier centerlines based on Euclidean allocation
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021,https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019
Livia Jakob, Noel Gourmelen, Martin Ewart, and Stephen Plummer
The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-1845-2021,https://doi.org/10.5194/tc-15-1845-2021, 2021
Short summary
Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021,https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021,https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary

Cited articles

Avak, S. E., Schwikowski, M., and Eichler A.: Impact and implications of meltwater percolation on trace element records observed in a high-Alpine ice core, J. Glaciol., 64, 877–886, https://doi.org/10.1017/jog.2018.74, 2018. 
Avak, S. E., Trachsel, J. C., Edebeli, J., Brütsch, S., Bartels-Rausch, T., Schneebeli, M., Schwikowski M., and Eichler A.: Melt-induced fractionation of major ions and trace elements in an Alpine snowpack, Journal of Geophysical Research: Earth Surface, 124, 1647–1657, https://doi.org/10.1029/2019JF005026, 2019. 
Bocchiola, D. and Diolaiuti, G.: Evidence of climate change within the Adamello glacier of Italy, Theor. Appl. Climatol., 100, 351–369, https://doi.org/10.1007/s00704-009-0186-x, 2010. 
Carturan, L., Baroni, C., Becker, M., Bellin, A., Cainelli, O., Carton, A., Casarotto, C., Dalla Fontana, G., Godio, A., Martinelli, T., Salvatore, M. C., and Seppi, R.: Decay of a long-term monitored glacier: Careser Glacier (Ortles-Cevedale, European Alps), The Cryosphere, 7, 1819–1838, https://doi.org/10.5194/tc-7-1819-2013, 2013. 
Dansgaard, W. and Johnsen, S. J.: A flow model and a time scale for the ice core from Camp Century, Greenland, J. Glaciol., 8, 215–223, 1969. 
Download
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.