Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-4073-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4073-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
Department of Geological Sciences, Stockholm University, 10691,
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 10691,
Stockholm, Sweden
Thomas M. Cronin
Florence Bascom Geoscience Center, U.S. Geological Survey, Reston, VA,
20192, USA
Brendan Reilly
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, 92037, USA
Aage Kristian Olsen Alstrup
Department of Clinical Medicine – Nuclear Medicine and PET Centre, Aarhus
University Hospital, Aarhus, Denmark
Laura Gemery
Florence Bascom Geoscience Center, U.S. Geological Survey, Reston, VA,
20192, USA
Anna Golub
Florence Bascom Geoscience Center, U.S. Geological Survey, Reston, VA,
20192, USA
Larry A. Mayer
Center for Coastal and Ocean Mapping, University of New Hampshire,
Durham, NH, 03824, USA
Mathieu Morlighem
Department of Earth System Science, University of California, Irvine,
CA, 92697, USA
Matthias Moros
Leibniz Institute for Baltic Sea Research Warnemünde, 18119,
Rostock, Germany
Ole L. Munk
Department of Clinical Medicine – Nuclear Medicine and PET Centre, Aarhus
University Hospital, Aarhus, Denmark
Johan Nilsson
Bolin Centre for Climate Research, Stockholm University, 10691,
Stockholm, Sweden
Department of Meteorology, Stockholm University, 10691, Stockholm,
Sweden
Christof Pearce
Department of Geoscience and Arctic Research Centre, Aarhus
University, 8000, Aarhus, Denmark
Henrieka Detlef
Department of Geoscience and Arctic Research Centre, Aarhus
University, 8000, Aarhus, Denmark
Christian Stranne
Department of Geological Sciences, Stockholm University, 10691,
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 10691,
Stockholm, Sweden
Flor Vermassen
Department of Geological Sciences, Stockholm University, 10691,
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 10691,
Stockholm, Sweden
Gabriel West
Department of Geological Sciences, Stockholm University, 10691,
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 10691,
Stockholm, Sweden
Martin Jakobsson
Department of Geological Sciences, Stockholm University, 10691,
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 10691,
Stockholm, Sweden
Related authors
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Gong Cheng, Mansa Krishna, and Mathieu Morlighem
Geosci. Model Dev., 18, 5311–5327, https://doi.org/10.5194/gmd-18-5311-2025, https://doi.org/10.5194/gmd-18-5311-2025, 2025
Short summary
Short summary
Predicting ice sheet contributions to sea level rise is challenging due to limited data and uncertainties in key processes. Traditional models require complex methods that lack flexibility. We developed PINNICLE (Physics-Informed Neural Networks for Ice and CLimatE), an open-source Python library that integrates machine learning with physical laws to improve ice sheet modeling. By combining data and physics, PINNICLE enhances predictions and adaptability, providing a powerful tool for climate research and sea level rise projections.
Felicity A. Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 2695–2714, https://doi.org/10.5194/tc-19-2695-2025, https://doi.org/10.5194/tc-19-2695-2025, 2025
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades, in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low- and a high-emissions scenario. Very high levels of surface melt under a high-emissions future lead to a sea level rise contribution that is an order of magnitude higher than under a low-emissions future.
Daniel Abele, Thomas Kleiner, Yannic Fischler, Benjamin Uekermann, Gerasimos Chourdakis, Mathieu Morlighem, Achim Basermann, Christian Bischof, Hans-Joachim Bungartz, and Angelika Humbert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3345, https://doi.org/10.5194/egusphere-2025-3345, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
For accurate projections of the evolution of continental ice sheets in Greenland and Antartica, interactions between the ice and its environment must be included in simulations. For this purpose, we have implemented adapters for the ice sheet model ISSM and subglacial hydrology model CUAS-MPI for the coupling library preCICE. This simplifies the study of earth systems by allowing the models to interact with each other as well as with models of the oceans or atmosphere with very little effort.
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
The Cryosphere, 19, 2583–2599, https://doi.org/10.5194/tc-19-2583-2025, https://doi.org/10.5194/tc-19-2583-2025, 2025
Short summary
Short summary
Calving, the breaking of ice bodies from the terminus of a glacier, plays an important role in the mass losses of Greenland ice sheets. However, calving parameters have been poorly understood because of the intensive computational demands of traditional numerical models. To address this issue and find the optimal calving parameter that best represents real observations, we develop deep-learning emulators based on graph neural network architectures.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025, https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and be useful for GIS ice sheet modeling.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
Biogeosciences, 22, 2261–2286, https://doi.org/10.5194/bg-22-2261-2025, https://doi.org/10.5194/bg-22-2261-2025, 2025
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The data set will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the “Atlantification” of the Arctic Ocean.
Joshua K. Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
The Cryosphere, 19, 1559–1575, https://doi.org/10.5194/tc-19-1559-2025, https://doi.org/10.5194/tc-19-1559-2025, 2025
Short summary
Short summary
We use an ice sheet model to simulate the Last Glacial Maximum conditions of the Laurentide Ice Sheet (LIS) across the northeastern United States. A complex thermal history existed for the LIS that caused high erosion across most of the NE USA but prevented erosion across high-elevation mountain peaks and areas where ice flow was slow. This has implications for geologic studies which rely on the erosional nature of the LIS to reconstruct its glacial history and landscape evolution.
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
Lasse Z. Jensen, Julie K. Simonsen, Ada Pastor, Christof Pearce, Per Nørnberg, Lars Chresten Lund-Hansen, Kai Finster, and Tina Šantl-Temkiv
Aerosol Research, 3, 81–100, https://doi.org/10.5194/ar-3-81-2025, https://doi.org/10.5194/ar-3-81-2025, 2025
Short summary
Short summary
Our study explores particles in Arctic soils and streams that influence ice formation in clouds. By analyzing these environments, we identified specific microorganisms producing these particles. This research, which measured these particles in Arctic streams for the first time, provides new insights into their ecological role and transfer from soil to water. Our findings help us understand their production, sources, and potential impact on climate.
Francesca Baldacchino, Nicholas R. Golledge, Mathieu Morlighem, Huw Horgan, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
The Cryosphere, 19, 107–127, https://doi.org/10.5194/tc-19-107-2025, https://doi.org/10.5194/tc-19-107-2025, 2025
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for predicting ice sheet change. Field measurements show clear intra-annual variations in ice flow; however, it is unclear what mechanisms drive this variability. We show that local perturbations in basal melt can have a significant impact on ice flow speed, but a combination of forcings is likely driving the observed variability in ice flow.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024, https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Short summary
We conducted a comprehensive analysis of the stabilization and reinitialization techniques currently employed in ISSM and Úa for solving level-set equations, specifically those related to the dynamic representation of moving ice fronts within numerical ice sheet models. Our results demonstrate that the streamline upwind Petrov–Galerkin (SUPG) method outperforms the other approaches. We found that excessively frequent reinitialization can lead to exceptionally high errors in simulations.
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024, https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
Short summary
This study conducted 3D thermodynamic ice sheet model experiments, and modeled temperatures were compared with 15 observed borehole temperature profiles. We found that using incompressibility of ice without sliding agrees well with observed temperature profiles in slow-flow regions, while incorporating sliding in fast-flow regions captures observed temperature profiles. Also, the choice of vertical velocity scheme has a greater impact on the shape of the modeled temperature profile.
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024, https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
Short summary
We solve momentum balance for unstructured meshes to predict ice flow for real glaciers using a pseudo-transient method on graphics processing units (GPUs) and compare it to a standard central processing unit (CPU) implementation. We justify the GPU implementation by applying the price-to-performance metric for up to million-grid-point spatial resolutions. This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge predictions.
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023, https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
Short summary
Ice sheet models are often initialized using snapshot observations of present-day conditions, but this approach has limitations in capturing the transient evolution of the system. To more accurately represent the accelerating changes in glaciers, we employed time-dependent data assimilation. We found that models calibrated with the transient data better capture past trends and more accurately reproduce changes after the calibration period, even with limited observations.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Christof Pearce, Karen Søby Özdemir, Ronja Forchhammer Mathiasen, Henrieka Detlef, and Jesper Olsen
Geochronology, 5, 451–465, https://doi.org/10.5194/gchron-5-451-2023, https://doi.org/10.5194/gchron-5-451-2023, 2023
Short summary
Short summary
Reliable chronologies lie at the base of paleoclimatological reconstructions. When working with marine sediment cores, the most common dating tool for recent sediments is radiocarbon, but this requires calibration to convert it to calendar ages. This calibration requires knowledge of the marine radiocarbon reservoir age, and this is known to vary in space and time. In this study we provide 92 new radiocarbon measurements to improve our knowledge of the reservoir age around Greenland.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023, https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Short summary
We use numerical modeling to study iceberg calving off of ice shelves in Antarctica. We examine four widely used mathematical descriptions of calving (
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023, https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Short summary
Understanding ice–ocean interactions under floating ice tongues in Greenland and Antarctica is a major challenge in climate modelling and a source of uncertainty in future sea level projections. We use a high-resolution ocean model to investigate basal melting and melt-driven circulation under the floating tongue of Ryder Glacier, northwestern Greenland. We study the response to oceanic and atmospheric warming. Our results are universal and relevant for the development of climate models.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Alistair J. Monteath, Matthew S. M. Bolton, Jordan Harvey, Marit-Solveig Seidenkrantz, Christof Pearce, and Britta Jensen
Geochronology, 5, 229–240, https://doi.org/10.5194/gchron-5-229-2023, https://doi.org/10.5194/gchron-5-229-2023, 2023
Short summary
Short summary
Accurately dating ocean cores is challenging because the radiocarbon age of water masses varies substantially. We identify ash fragments from eruptions more than 4000 km from their source and use these time markers to develop a new age–depth model for an ocean core in Placentia Bay, North Atlantic. Our results show that the radiocarbon age of waters masses in the bay varied considerably during the last 10 000 years and highlight the potential of using ultra-distal ash deposits in this region.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022, https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Short summary
Understanding how the Ross Ice Shelf will evolve in a warming world is important to the future stability of Antarctica. It remains unclear what changes could drive the largest mass loss in the future and where places are most likely to trigger larger mass losses. Sensitivity maps are modelled showing that the RIS is sensitive to changes in environmental and glaciological controls at regions which are currently experiencing changes. These regions need to be monitored in a warming world.
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Short summary
We use an ice sheet model to determine what influenced the Greenland Ice Sheet to retreat across a portion of southwestern Greenland during the Holocene (about the last 12 000 years). Our simulations, constrained by observations from geologic markers, show that atmospheric warming and ice melt primarily caused the ice sheet to retreat rapidly across this domain. We find, however, that iceberg calving at the interface where the ice meets the ocean significantly influenced ice mass change.
Yannic Fischler, Martin Rückamp, Christian Bischof, Vadym Aizinger, Mathieu Morlighem, and Angelika Humbert
Geosci. Model Dev., 15, 3753–3771, https://doi.org/10.5194/gmd-15-3753-2022, https://doi.org/10.5194/gmd-15-3753-2022, 2022
Short summary
Short summary
Ice sheet models are used to simulate the changes of ice sheets in future but are currently often run in coarse resolution and/or with neglecting important physics to make them affordable in terms of computational costs. We conducted a study simulating the Greenland Ice Sheet in high resolution and adequate physics to test where the ISSM ice sheet code is using most time and what could be done to improve its performance for future computer architectures that allow massive parallel computing.
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022, https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Short summary
The shape of a fjord can promote or inhibit glacier retreat in response to climate change. We conduct experiments with a synthetic setup under idealized conditions in a numerical model to study and quantify the processes involved. We find that friction between ice and fjord is the most important factor and that it is possible to directly link ice discharge and grounding line retreat to fjord topography in a quantitative way.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Thiago Dias dos Santos, Mathieu Morlighem, and Douglas Brinkerhoff
The Cryosphere, 16, 179–195, https://doi.org/10.5194/tc-16-179-2022, https://doi.org/10.5194/tc-16-179-2022, 2022
Short summary
Short summary
Projecting the future evolution of Greenland and Antarctica and their potential contribution to sea level rise often relies on computer simulations carried out by numerical ice sheet models. Here we present a new vertically integrated ice sheet model and assess its performance using different benchmarks. The new model shows results comparable to a three-dimensional model at relatively lower computational cost, suggesting that it is an excellent alternative for long-term simulations.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Thiago Dias dos Santos, Mathieu Morlighem, and Hélène Seroussi
Geosci. Model Dev., 14, 2545–2573, https://doi.org/10.5194/gmd-14-2545-2021, https://doi.org/10.5194/gmd-14-2545-2021, 2021
Short summary
Short summary
Numerical models are routinely used to understand the past and future behavior of ice sheets in response to climate evolution. As is always the case with numerical modeling, one needs to minimize biases and numerical artifacts due to the choice of numerical scheme employed in such models. Here, we assess different numerical schemes in time-dependent simulations of ice sheets. We also introduce a new parameterization for the driving stress, the force that drives the ice sheet flow.
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021, https://doi.org/10.5194/tc-15-1975-2021, 2021
Short summary
Short summary
Some properties of ice flow models must be initialised using observed data before they can be used to produce reliable predictions of the future. Different models have different ways of doing this, and the process is generally seen as being specific to an individual model. We compare the methods used by three different models and show that they produce similar outputs. We also demonstrate that the outputs from one model can be used in other models without introducing large uncertainties.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Colin Ware, Larry Mayer, Paul Johnson, Martin Jakobsson, and Vicki Ferrini
Geosci. Instrum. Method. Data Syst., 9, 375–384, https://doi.org/10.5194/gi-9-375-2020, https://doi.org/10.5194/gi-9-375-2020, 2020
Short summary
Short summary
Geographic coordinates (latitude and longitude) are widely used in geospatial applications, and terrains are often defined by regular grids in geographic coordinates. However, because of convergence of lines of longitude near the poles there is oversampling in the latitude (zonal) direction. Also, there is no standard way of defining a hierarchy of grids to consistently deal with data having different spatial resolutions. The proposed global geographic grid system solves both problems.
Martin Rückamp, Angelika Humbert, Thomas Kleiner, Mathieu Morlighem, and Helene Seroussi
Geosci. Model Dev., 13, 4491–4501, https://doi.org/10.5194/gmd-13-4491-2020, https://doi.org/10.5194/gmd-13-4491-2020, 2020
Short summary
Short summary
We present enthalpy formulations within the Ice-Sheet and Sea-Level System model that show better performance than earlier implementations. A first experiment indicates that the treatment of discontinuous conductivities of the solid–fluid system with a geometric mean produce accurate results when applied to coarse vertical resolutions. In a second experiment, we propose a novel stabilization formulation that avoids the problem of thin elements. This method provides accurate and stable results.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Alley, R. B.: Sedimentary processes may cause fluctuations of tidewater
glaciers, Ann. Glaciol., 15, 119–124, 1991.
Axford, Y., Lasher, G. E., Kelly, M. A., Osterberg, E. C., Landis, J.,
Schellinger, G. C., Pfeiffer, A., Thompson, E., and Francis, D. R.: Holocene
temperature history of northwest Greenland – With new ice cap constraints
and chironomid assemblages from Deltasø, Quaternary Sci. Rev., 215,
160–172, https://doi.org/10.1016/j.quascirev.2019.05.011, 2019.
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R.
M.: Ice sheet contributions to future sea-level rise from structured expert
judgment, P. Natl. Acad. Sci. USA, 116, 11195, https://doi.org/10.1073/pnas.1817205116, 2019.
Bennike, O. and Björck, S.: Chronology of the last recession of the
Greenland ice sheet, J. Quaternary Sci., 17, 211–219, 2002.
Bennike, O. and Kelly, M.: Radiocarbon dating of samples collected during
the 1984 expedition to North Greenland, Rapp. Grønlands geol. Unders.,
135, 8–10, 1987.
Bogen, J., Xu, M., and Kennie, P.: The impact of pro-glacial lakes on
downstream sediment delivery in Norway, Earth Surf. Proc.
Land., 40, 942–952, https://doi.org/10.1002/esp.3669, 2015.
Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de
Vernal, A., Fisher, D., Francus, P., Frechette, B., Gajewski, K., Jennings,
A., Kaufman, D. S., Miller, G., Rouston, C., and Wagner, B.: Holocene climate
change in Arctic Canada and Greenland, Quaternary Sci. Rev., 147, 340–364,
https://doi.org/10.1016/j.quascirev.2016.02.010, 2016.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon,
51, 337–360, 2009,
Cage, A. G., Pieńkowski, A. J., Jennings, A., Knudsen, K. L., and Seidenkrantz, M.-S.: Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain, J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, 2021.
Calder, B., Eriksson, B., Jerram, K., Weidner, E., Holmes, F., Muchowski, J., Prakash, A., Handl, T., Ståhl, E., Mayer, L., and Jakobsson, M.: High-resolution bathymetry from the Ryder 2019 expedition to Northwest Greenland, Dataset version 1.0, Bolin Centre Database [data set], https://doi.org/10.17043/ryder-2019-bathymetry, 2020.
Carr, J. R., Vieli, A., Stokes, C. R., Jamieson, S. S. R., Palmer, S. J.,
Christoffersen, P., Dowdeswell, J. A., Nick, F. M., Blankenship, D. D., and
Young, D. A.: Basal topographic controls on rapid retreat of Humboldt
Glacier, Northern Greenland, J. Glaciol., 61, 137–150,
https://doi.org/10.3189/2015JoG14J128, 2015.
Carrivick J. L. and Tweed F. S.: Proglacial lakes: character, behavior and
geological importance, Quaternary Sci. Rev., 78, 34–52, 2013.
Cook, A. J., Copland, L., Noel, B., Stokes, C. R., Bentley, M., Sharp, M.
J., Bingham, R. G., and van den Broeke, M. R.: Atmospheric forcing of rapid
marine-terminating glacier retreat in the Canadian Arctic Archipelago,
Sci. Adv., 5, eaau8507, https://doi.org/10.1126/sciadv.aau8507, 2019.
Coulthard, R. D., Furze, M. F. A., Pienkowski, A. J., Chantel Nixon, F.,
England, J. H.: New marine DR values for Arctic Canada, Quaternary
Geochronol., 5, 419–434, https://doi.org/10.1016/j.quageo.2010.03.002, 2010.
Cronin, T. M., Seidenstein, J., Keller, K., McDougall, K., Reufer, A., and
Gemery, L.,: The benthic foraminifera cassidulina from the Arctic Ocean:
Application to paleoceanography and biostratigraphy, Micropaleontology,
65, 105–125, 2019.
Davies, V. E. and Krinsley, D. B.: The recent regimen of the ice cap margin
in North Greenland, Assoc. Internat. d'Hydrologie Sci., 58, 119–130, 1962.
Dowdeswell, J. A., Whittington, R., and Marienfield, P.: The origin of
massive diamicton facies by iceberg rafting and scouring, Scoresby Sund,
East Greenland, Sedimentology, 41, 21–35, 1994.
Dyke, L. M., Andresen, C. S., Seidenkrantz, M.-S., Hughes, A. L. C., Hiemstra,
J. F., Murray, T., Bjørk, A. A., Sutherland, D. A., and Vermassen, F.:
Minimal Holocene retreat of large tidewater glaciers in Køge Bugt,
southeast Greenland, Sci. Rep., 7, 12330, https://doi.org/10.1038/s41598-017-12018-x, 2017.
Enderlin, E. M., Howat, I. M., and Vieli, A.: High sensitivity of tidewater outlet glacier dynamics to shape, The Cryosphere, 7, 1007–1015, https://doi.org/10.5194/tc-7-1007-2013, 2013.
England, J.: Coalescent Greenland and Innuitian ice during the Last Glacial
Maximum: revising the Quaternary of the Canadian High Arctic, Quaternary Sci. Rev., 18, 421–456, https://doi.org/10.1016/S0277-3791(98)00070-5, 1999.
England, J. H., Lakeman, T. R., Lemmen, D. S., Bednarski, J. M., Stewart, T.
G., and Evans, D. J. A.: A millennial-scale record of Arctic Ocean sea ice
variability and the demise of the Ellesmere Island ice shelves, Geophys.
Res. Lett., 35, L19502, https://doi.org/10.1029/2008GL034470, 2008.
Funder, S.: 14C-dating of samples collected during the 1979 expedition to North Greenland, Rapport Grønlands Geologiske Undersøgelse, 110, 9–14, https://doi.org/10.34194/rapggu.v110.7787, 1982.
Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjaer, K. H., Korsgaard, N. J.,
Larsen, N. K., Linderson, H., Lysa, A., Moller, P., Olsen, J., and Willerslev,
E.: A 10,000-year record of Arctic Ocean sea-ice variability – view from the
beach, Science, 333, 747–750, https://doi.org/10.1126/science.1202760, 2011a.
Funder, S., Kjeldsen, K. K., Kjær, K. H., and O Cofaigh, C.: The Greenland
ice sheet during the past 300,000 Years, Dev. Quaternary
Sci., 15, 699–713, https://doi.org/10.1016/B978-0-444-53447-7.00050-7, 2011b.
Georgiadis, E., Giraudeau, J., Martinez, P., Lajeunesse, P., St-Onge, G., Schmidt, S., and Massé, G.: Deglacial to postglacial history of Nares Strait, Northwest Greenland: a marine perspective from Kane Basin, Clim. Past, 14, 1991–2010, https://doi.org/10.5194/cp-14-1991-2018, 2018.
Hammer, C. U., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N., and Steffensen, J. P.: The paleoclimatic record from a 345 m long ice core
from the Hans Tausen Iskappe, Meddelelser Om. Grønl. Geosci., 39, 87–95,
2001.
Hatfield, R. G., Stoner, J. S., Reilly, B. T., Tepley, F. J., Wheeler, B. H.,
Housen, B. A.: Grain size dependent magnetic discrimination of Iceland and
South Greenland terrestrial sediments in the northern North Atlantic
sediment record, Earth Planet. Sci. Lett., 474, https://doi.org/10.1016/j.epsl.2017.06.042, 2017.
Heaton, T., Köhler, P., Butzin, M., Bard, E., Reimer, R., Austin, W.,
Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J.,
Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L.:
Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP),
Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Henriksen, N. and Higgins, A. K.: 2000. Early Palaeozoic Basin Development
of North Greenland – Part of the Franklinian Basin, Polarforschung, 68,
131–140, 2020.
Henriksen, N., Higgins, A., Kalsbeek, F., and Pulvertaft, T. C. R.:
Greenland from Archaean to Quaternary. Descriptive text to the 1995
Geological map of Greenland, 1:2 500 000. 2nd edition, GEUS Bulletin, 18,
1–126, https://doi.org/10.34194/geusb.v18.4993, 2009.
Higgins, A. K.: North Greenland ice islands, Polar Record, 25, 207–212,
1989.
Higgins, A. K.: North Greenland glacier velocities and calf ice production,
Polarforschung, 60, 1–23, 1990.
Higgins, A. K., Soper, N. J., and Leslie, A. G.: The Ellesmerian and
Caledonian Orogenic Belts of Greenland, Polarforschung, 68, 141–151, 1998.
Hill, E. A., Carr, J. R., and Stokes, C. R.: A Review of Recent Changes in
Major Marine-Terminating Outlet Glaciers in Northern Greenland, Front.
Earth Sci., 4, 111, https://doi.org/10.3389/feart.2016.00111, 2017.
Hill, E. A., Carr, J. R., Stokes, C. R., and Gudmundsson, G. H.: Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015, The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, 2018.
Hogan, K. A., Jakobsson, M., Mayer, L., Reilly, B. T., Jennings, A. E., Stoner, J. S., Nielsen, T., Andresen, K. J., Nørmark, E., Heirman, K. A., Kamla, E., Jerram, K., Stranne, C., and Mix, A.: Glacial sedimentation, fluxes and erosion rates associated with ice retreat in Petermann Fjord and Nares Strait, north-west Greenland, The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, 2020.
Jakobsson, M., Hogan, K. A., Mayer, L. A., Mix, A., Jennings, A., Stoner, J.,
Eriksson, B., Jerram, K., Mohammad, R., Pearce, C., Reilly, B., and Stranne, C.:
The Holocene retreat dynamics and stability of Petermann Glacier in
northwest Greenland, Nat. Commun., 9, 2104,
https://doi.org/10.1038/s41467-018-04573-2, 2018.
Jakobsson, M., Mayer, L., Nilsson, J., Stranne, C., Calder, B., O'Regan, M.,
Mix, A., and Ryder19 Shipboard Scientific Party: Ryder Glacier in northwest
Greenland is shielded from warm Atlantic water by a bathymetric sill, Nat.
Commun. Earth Environ., 1, 45,
https://doi.org/10.1038/s43247-020-00043-0, 2020.
Jamieson, S. S. R., Vieli, A., Livingstine, S. J., Ó Cofaigh, C.,
Stokes, C., Hillenbrand, C.-D., and Dowdeswell, J.: Ice-stream stability in a
reverse bed slope, Nat. Geosci., 5, 799–802, https://doi.org/10.1038/NGEO1600,
2012.
Jennings, A. E., Sheldon, C., Cronin, T. M., Francus, P., Stoner, J., and
Andrews, J.: The Holocene history of Nares Strait: Transition from glacial
bay to Arctic-Atlantic throughflow, Oceanography, 24, 18–33, 2011.
Jennings, A. E., Andrews, J. T., Oliver, B., Walczak, M., and Mix, A.:Retreat
of the Smith Sound Ice Stream in the Early Holocene, Boreas, 48, 825–840,
https://doi.org/10.1111/bor.12391, 2019.
Kaufman, D., Ager, T., Anderson, N., Anderson, P., Andrews, J., Bartlein, P.,
Brubaker, L., Coats, L., Cwynar, L., Duvall, M., Dyke, A., Edwards, M., Eisner, W.,
Gajewski, K., Geirsdóttir, A., Hu, F., Jennings, A., Kaplan, M., Kerwin, M.,
Lozhkin, A., MacDonald, G., Miller, G., Mock, C., Oswald, W., Otto-Bliesner, B.,
Porinchu, D., Rühland, K., Smol, J., Steig, E., and Wolfe, B.: Holocene
thermal maximum in the western Arctic (0–180∘ W), Quaternary Sci. Rev., 23, 529–560, https://doi.org/10.1016/J.QUASCIREV.2003.09.007,
2004.
Kelly, M. and Bennike, O.: Quaternary geology of parts of central and
western North Greenland: a preliminary account, Rapp. Grønlands Geol.
Unders., 126, 111–116, 1985.
Kelly, M. and Bennike, O.: Quaternary Geology of Western and Central North
Greenland, Rapp. Grønlands Geol. Unders.,
Copenhagen, 153, 34 pp., 1992.
Koch, L.: Contributions to the glaciology of North Greenland, Meddelelser om
Grønland, 65, 181–464, 1928.
Landvik, J. Y., Weidick, A., and Hansen, A.: The glacial history of the Hans
Tausen Iskappe and the last glaciation of Peary Land, North Greenland,
Meddelelser Om. Grønl. Geosci., 39, 27–44, 2001.
Larsen, N. K., Kjaer, K. H., Funder, S., Möller, P., van der Meer, J. J.
M., Schomacker, A., Linge, H., and Darby, D. A.: Late Quaternary glaciation
history of northernmost Greenland Evidence of shelf-based ice, Quaternary Sci. Rev., 29, 3339–3414, https://doi.org/10.1016/j.quascirev.2010.07.027, 2010.
Larsen, N. K., Levy, L. B., Carlson, A. E., Buizert, C., Olsen, J., Strunk,
A., Bjørk, A. A., and Skov, D. S.: Instability of the Northeast Greenland
Ice Stream over the last 45,000 years, Nat. Commun., 9, 1872,
https://doi.org/10.1038/s41467-018-04312-7, 2018.
Larsen, N. K., Levy, L. B., Strunk, A., Søndergaard, A. S., Olsen, J.,
and Lauridsen, T. L.: Local ice caps inFinderup Land, North Greenland,
survived the Holocene Thermal Maximum, Boreas, 48, 551–562,
https://doi.org/10.1111/bor.12384, 2019.
Lasher, G. E., Axford, Y., McFarlin, J. M., Kelly, M. A., Osterberg, E. C.,
and Berkelhammer, M. B.: Holocene temperatures and isotopes of precipitation
in Northwest Greenland recorded in lacustrine organic materials, Quaternary Sci. Rev., 170, 45–55, https://doi.org/10.1016/j.quascirev.2017.06.016, 2017.
Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L.,
Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke, A. S.:
High Arctic Holocene temperature record from the Agassiz ice cap and
Greenland ice sheet evolution, P. Natl. Acad. Sci. USA, 114, 5952–5957,
https://doi.org/10.1073/pnas.1616287114, 2017
Madsen, K. N. and Thorsteinsson, T.: Textures, fabrics and melt-layer
stratigraphy in the Hans Tausen ice core, North Greenland – indications of
late Holocene ice cap generation?, Meddelelser Om. Grønl. Geosci., 39,
97–114, 2001.
McFarlin, J. M., Axford, Y., Osburn, M. R., Kelly, M. A., Osterberg, E. C.,
and Farnsworth, L. B.: Pronounced summer warming in northwest Greenland
during the Holocene and Last Interglacial, P. Natl. Acad. Sci. USA,
201720420, https://doi.org/10.1073/pnas.1720420115, 2018.
Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak,
L., Serreze, M. C., and White, J. W. C.: Arctic amplification: can the past
constrain the future?, Quaternary Sci. Rev., 29, 1779–1790,
https://doi.org/10.1016/j.quascirev.2010.02.008, 2010.
Möller, P., Larsen, N. K., Kjær, K. H., Funder, S., Schomacker, A.,
Linge, H., and Fabel, D.: Early to middle Holocene valley glaciations on
northernmost Greenland, Quaternary Sci. Rev., 29, 3379–3398,
https://doi.org/10.1016/j.quascirev.2010.06.044, 2010.
Mörner, N.-A. and Funder, S.: C-14 dating of samples collected during
the NORQUA 86 expedition, and notes on the marine reservoir effect,
Meddelelser om Grønland, 22, 57–59, 1990.
Moon, T. and Joughin, I.: Changes in ice front position on Greenland's
outlet glaciers from 1992 to 2007, J. Geophys. Res.-Earth, 113, 1–10,
https://doi.org/10.1029/2007JF000927, 2008.
Moon, T., Joughin, I., Sith, B., and Howat, I.: 21st-century evolution of
Greenland outlet glacier velocities, Science, 336, 576–578,
https://doi.org/10.1126/science.1219985, 2012.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L. A., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M.,
and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean
Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With
Mass Conservation, Geophys. Res. Lett. , 44, 11051–11061,
2017.
Mottram, R., Simonsen, S., Høyer Svendsen, S., Barletta, V. R.,
Sandberg Sørensen, L., Nagler, T., Wuite, J., Groh, A., Horwath, M.,
Rosier, J., Solgaard, A., Hvidberg, C. S., and Forsberg, R.: An Integrated View
of Greenland Ice Sheet Mass Changes Based on Models and Satellite
Observations, Remote Sens., 11, 1407, https://doi.org/10.3390/rs11121407, 2019.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, 2019.
Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., and Potin, P.: The
Sentinel-1 Mission: New Opportunities for Ice Sheet Observations, Remote
Sensing, 7, 9371–9389, https://doi.org/10.3390/rs70709371, 2015.
O'Cofaigh, C. and Dowdeswell, J. A.: Laminated sediments in glacimarine
environments: diagnostic criteria for their interpretation, Quaternary Sci. Rev.,
20, 1411–1436, 2001.
Olsen, J., Kjær, K. H., Funder, S., Larsen, N. K., and Ludikova, A.:
High-Arctic climate conditions for the last 7000 years inferred from
multi-proxy analysis of the Bliss Lake record, North Greenland, J. Quaternary
Sci., 27, 318–327, https://doi.org/10.1002/jqs.1548, 2012.
O'Regan, M.: Physical properties of marine sediment cores from the Ryder 2019 expedition, Dataset version 1.0, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ryder-2019-sediment-mscl-1, 2021a.
O'Regan, M.: Geochemical XRF core scanning data of marine sediment cores from the Ryder 2019 expedition, Dataset version, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ryder-2019-sediment-xrf-1, 2021b.
Piret, L., Bertrand, S., Hawkings, J., Kylander, M. E., Torrejón, F.,
Amann, B., and Wadham, J.: High-resolution fjord sediment record of a
receding glacier with growing intermediate proglacial lake (Steffen Fjord,
Chilean Patagonia), Earth Surf. Proc. Land., 46, 239–251, https://doi.org/10.1002/esp.5015, 2021.
Powell, R. D.: Glacimarine processes at grounding line fans and their growth
to ice-contact deltas, Geol. Soc. London, Spec. Publ., 53, 53–73, https://doi.org/10.1144/GSL.SP.1990.053.01.03, 1990.
Reilly, B. T., Stoner, J. S., and Wiest, J.: SedCT: MATLABTM tools for
standardized and quantitative processing of sediment core computed
tomography (CT) data collected using a medical CT scanner, Geochem. Geophys.
Geosyst., 18, 3231–3240, https://doi.org/10.1002/2017GC006884, 2017.
Reilly, B. T., Stoner, J. S., Mix, A. C., Walczak, M. H., Jennings, A.,
Jakobsson, M., Dyke, L., Glueder, A., Nicholls, K., Hogan, K. A., Mayer, L.
A., Hatfield, R. G., Albert, S., Marcott, S., Fallon, S., and Cheseby, M.:
Holocene break-up and reestablishment of the Petermann Ice Tongue, Northwest
Greenland, Quaternary Sci. Rev., 218, 322–342,
https://doi.org/10.1016/j.quascirev.2019.06.023, 2019.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell,
P. G., Bronk- Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friederich,
M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S., Reimer,
R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der
Plicht, J., and Weyhenmeyer, C. E.: IntCal09 and Marine09 radiocarbon age
calibration curves, 0–50,000 years cal BP, Radiocarbon, 51, 1111–1150,
2009.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P.,
Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G.,
Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W.,
Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000
Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Smith, J. A., Graham, A. G. C., Post, A. L., Hillenbrand, C.-D., Bart, P. J.,
and Powell, R. D.: The marine geological imprint of Antarctic ice shelves,
Nat. Commun., 10, 5635, https://doi.org/10.1038/s41467-019-13496-5, 2019.
Søndergaard, A. S., Larsen, N. K., Steinemann, O., Olsen, J., Funder, S., Egholm, D. L., and Kjær, K. H.: Glacial history of Inglefield Land, north Greenland from combined in situ 10Be and 14C exposure dating, Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, 2020.
Stranne, C., Nilsson, J., Muchowski, J., and Chawarski, J.: Oceanographic CTD data from the Ryder 2019 expedition, Dataset version 1.0, Bolin Centre Database [data set], https://doi.org/10.17043/ryder-2019-ctd, 2020.
Strunk, A., Larsen, N. K., Nilsson, A., Seidenkrantz, M.-S., Levy, L. B.,
Olsen, J., and Lauridsen, T. L.: Relative sea-level changes and ice sheet
history in Finderup Land, North Greenland, Front. Earth Sci., 6,
129, https://doi.org/10.3389/feart.2018.00129, 2018.
Vermassen, F., Bjørk, A. A., Sicre, M. A., Jaeger, J. M., Wangner, D. J.,
Kjeldsen, K. K., Siggaard-Andersen, M. L., Klein, V., Mouginot, J., Kjær,
K. H., and Andresen, C. S.: A Major Collapse of Kangerlussuaq Glacier's Ice
Tongue Between 1932 and 1933 in East Greenland, Geophys. Res. Lett., 47,
1–9, https://doi.org/10.1029/2019GL085954, 2020.
Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen,
S. J., Fisher, D. A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen,
K. K., Blunier, T., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.:
Holocene thinning of the Greenland ice sheet, Nature, 461, 385–388,
https://doi.org/10.1038/nature08355, 2009.
Wangner, D. J., Jennings, A. E., Vermassen, F., Dyke, L. M., Hogan, K. A.,
Schmidt, S., Kjær, K. H., Knudsen, M. F., and Andresen, C. S.: A 2000-year
record of ocean influence on Jakobshavn Isbræ calving activity, based on
marine sediment cores, Holocene, 28, 1731–1744,
https://doi.org/10.1177/0959683618788701, 2018.
Wood, M., Rignot, E., Fenty, I., An, L., Bjork, A., van den Broeke, M., Cai,
C., Kane, E., Menemenlis, D., Milan, R., Morlighem, M., Mouginot, J., Noel,
B., Scheuchi, B., Velicogna, I., Willis, J. K., and Zhang, H.: Ocean forcing
drives glacier retreat in Greenland, Sci. Adv., 7, eaba7282, https://doi.org/10.1126/sciadv.aba7282, 2021.
Young, N. E. and Briner, J. P.: Holocene evolution of the western Greenland
Ice Sheet: Assessing geophysical ice-sheet models with geological
reconstructions of ice-margin change, Quaternary Sci. Rev., 114, 1–17,
https://doi.org/10.1016/j.quascirev.2015.01.018, 2015.
Zekollari, H., Lecavalier, B. S., and Huybrechts, P.: Holocene evolution of
Hans Tausen Iskappe (Greenland) and implications for the palaeoclimatic
evolution of the high Arctic, Quaternary Sci. Rev., 168, 182–193,
https://doi.org/10.1016/j.quascirev.2017.05.010, 2017.
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the...