Articles | Volume 15, issue 7
The Cryosphere, 15, 3401–3421, 2021
https://doi.org/10.5194/tc-15-3401-2021
The Cryosphere, 15, 3401–3421, 2021
https://doi.org/10.5194/tc-15-3401-2021
Research article
21 Jul 2021
Research article | 21 Jul 2021

Spaceborne infrared imagery for early detection of Weddell Polynya opening

Céline Heuzé et al.

Related authors

Southern Ocean polynyas in CMIP6 models
Martin Mohrmann, Céline Heuzé, and Sebastiaan Swart
The Cryosphere, 15, 4281–4313, https://doi.org/10.5194/tc-15-4281-2021,https://doi.org/10.5194/tc-15-4281-2021, 2021
Short summary
Freshwater in the Arctic Ocean 2010–2019
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021,https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models
Céline Heuzé
Ocean Sci., 17, 59–90, https://doi.org/10.5194/os-17-59-2021,https://doi.org/10.5194/os-17-59-2021, 2021
Short summary
Influence of initial stratification, wind and sea ice on the modelled oceanic circulation in Nares Strait, northwest Greenland
Lovisa Waldrop Bergman and Céline Heuzé
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-122,https://doi.org/10.5194/os-2018-122, 2018
Preprint withdrawn
Short summary
North Atlantic deep water formation and AMOC in CMIP5 models
Céline Heuzé
Ocean Sci., 13, 609–622, https://doi.org/10.5194/os-13-609-2017,https://doi.org/10.5194/os-13-609-2017, 2017
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022,https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022,https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022,https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary
Rain-on-Snow (ROS) Understudied in Sea Ice Remote Sensing: A Multi-Sensor Analysis of ROS during MOSAiC
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rotosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-383,https://doi.org/10.5194/tc-2021-383, 2022
Preprint under review for TC
Short summary
Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022,https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary

Cited articles

Ackerman, S., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and Menzel, P.: MODIS Atmosphere L2 Cloud Mask Product, NASA MODIS Adaptive Processing System, Tech. rep., Goddard Space Flight Center, USA, https://doi.org/10.5067/MODIS/MYD35_L2.006, 2017. a, b
Aldenhoff, W, Heuzé, C., and Eriksson, L. E. B.: Comparison of ice/water classification in Fram Strait from C-and L-band SAR imagery, Ann. Glaciol., 59, 112–123, 2018. a
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE, https://doi.org/10.17882/42182, 2021. a
Beckmann, A., Timmermann, R., Pereira, A. F., and Mohn, C.: The effect of flow at Maud Rise on the sea-ice cover–numerical experiments, Ocean Dynam., 52, 11–25, 2001. a
Bröhan, D. and Kaleschke, L.: A nine-year climatology of Arctic sea ice lead orientation and frequency from AMSR-E, Remote Sensing, 6, 1451–1475, 2014. a
Download
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.