Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3377-2021
https://doi.org/10.5194/tc-15-3377-2021
Research article
 | 
21 Jul 2021
Research article |  | 21 Jul 2021

Modelling steady states and the transient response of debris-covered glaciers

James C. Ferguson and Andreas Vieli

Related authors

The control of short-term ice mélange weakening episodes on calving activity at major Greenland outlet glaciers
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023,https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
In situ observations of the Swiss periglacial environment using GNSS instruments
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe​​​​​​​ Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza​​​​​​​, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022,https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021,https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 14, 1051–1066, https://doi.org/10.5194/tc-14-1051-2020,https://doi.org/10.5194/tc-14-1051-2020, 2020
Short summary
In situ measurements of the ice flow motion at Eqip Sermia Glacier using a remotely controlled unmanned aerial vehicle (UAV)
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst., 9, 1–10, https://doi.org/10.5194/gi-9-1-2020,https://doi.org/10.5194/gi-9-1-2020, 2020
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
Thermal regime of the Grigoriev ice cap and the Sary-Tor glacier in the inner Tien Shan, Kyrgyzstan
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 16, 4513–4535, https://doi.org/10.5194/tc-16-4513-2022,https://doi.org/10.5194/tc-16-4513-2022, 2022
Short summary
Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: an application to High Mountain Asia
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022,https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
The 21st-century fate of the Mocho-Choshuenco ice cap in southern Chile
Matthias Scheiter, Marius Schaefer, Eduardo Flández, Deniz Bozkurt, and Ralf Greve
The Cryosphere, 15, 3637–3654, https://doi.org/10.5194/tc-15-3637-2021,https://doi.org/10.5194/tc-15-3637-2021, 2021
Short summary
Twentieth century global glacier mass change: an ensemble-based model reconstruction
Jan-Hendrik Malles and Ben Marzeion
The Cryosphere, 15, 3135–3157, https://doi.org/10.5194/tc-15-3135-2021,https://doi.org/10.5194/tc-15-3135-2021, 2021
Short summary
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020,https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary

Cited articles

Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016. a, b, c, d, e, f, g, h, i, j, k
Anderson, L. S. and Anderson, R. S.: Debris thickness patterns on debris-covered glaciers, Geomorphology, 311, 1–12, https://doi.org/10.1016/j.geomorph.2018.03.014, 2018. a, b, c, d, e
Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Buri, P.: Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates, The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, 2021. a, b, c
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., and Crump, S. E.: Glaciation of alpine valleys: The glacier – debris-covered glacier – rock glacier continuum, Geomorphology, 311, 127–142, https://doi.org/10.1016/j.geomorph.2018.03.015, 2018. a
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res., 102, 20355–20362, https://doi.org/10.1029/97JB01696, 1997. a, b
Download
Short summary
Debris-covered glaciers have a greater extent than their debris-free counterparts due to insulation from the debris cover. However, the transient response to climate change remains poorly understood. We use a numerical model that couples ice dynamics and debris transport and varies the climate signal. We find that debris cover delays the transient response, especially for the extent. However, adding cryokarst features near the terminus greatly enhances the response.