Articles | Volume 15, issue 1
The Cryosphere, 15, 303–324, 2021
https://doi.org/10.5194/tc-15-303-2021
The Cryosphere, 15, 303–324, 2021
https://doi.org/10.5194/tc-15-303-2021
Research article
22 Jan 2021
Research article | 22 Jan 2021

Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden

Morgan E. Monz et al.

Related authors

Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022,https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy
Matthew S. Tarling, Matteo Demurtas, Steven A. F. Smith, Jeremy S. Rooney, Marianne Negrini, Cecilia Viti, Jasmine R. Petriglieri, and Keith C. Gordon
Eur. J. Mineral., 34, 285–300, https://doi.org/10.5194/ejm-34-285-2022,https://doi.org/10.5194/ejm-34-285-2022, 2022
Short summary
Ultrasonic and seismic constraints on crystallographic preferred orientations of the Priestley Glacier shear margin, Antarctica
Franz Lutz, David J. Prior, Holly Still, M. Hamish Bowman, Bia Boucinhas, Lisa Craw, Sheng Fan, Daeyeong Kim, Robert Mulvaney, Rilee E. Thomas, and Christina L. Hulbe
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-382,https://doi.org/10.5194/tc-2021-382, 2022
Preprint under review for TC
Short summary
Satellite altimetry detection of ice-shelf-influenced fast ice
Gemma M. Brett, Daniel Price, Wolfgang Rack, and Patricia J. Langhorne
The Cryosphere, 15, 4099–4115, https://doi.org/10.5194/tc-15-4099-2021,https://doi.org/10.5194/tc-15-4099-2021, 2021
Short summary
Winter growth and tidal variability of the sub-ice platelet layer observed with electromagnetic induction soundings
Gemma M. Brett, Gregory H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, and Anne Irvin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-61,https://doi.org/10.5194/tc-2021-61, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Discipline: Glaciers | Subject: Glaciers
Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022,https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
Whyjay Zheng
The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022,https://doi.org/10.5194/tc-16-1431-2022, 2022
Short summary
A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022,https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022,https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021,https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary

Cited articles

Allen, C. R., Kamb, W. B., Meier, M. F., and Sharp, R. P.: Structure of the lower Blue Glacier, Washington, J. Geol., 68, 601–625, https://doi.org/10.1086/626700, 1960. 
Alley, R. B.: Fabrics in polar ice sheets; development and prediction, Science, 240, 493–495, https://doi.org/10.1126/science.240.4851.493, 1988. 
Alley, R. B.: Flow-law hypothesis for ice-sheet modeling, J. Glaciol., 38, 245–256, https://doi.org/10.3189/S0022143000003658, 1992. 
Azuma, N.: A flow low for anisotropic polycrystalline ice under uniaxial compressive deformation, Cold Reg. Sci. Technol., 23, 137–147, https://doi.org/10.1016/0165-232x(94)00011-l, 1995. 
Azuma, N. and Azuma, K. G.: An anisotropic flow law for ice-sheet ice and its implications, Ann. Glaciol., 23, 202–208, 1996. 
Download
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.