Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-1811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-1811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice
Danish Meteorological Institute, Copenhagen, Denmark
Vishnu Nandan
Center for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment,
Earth, and Resources, University of Manitoba, Winnipeg, Canada
Cryosphere Climate Research Group, Department of Geography, University of Calgary, Calgary, Canada
John Yackel
Cryosphere Climate Research Group, Department of Geography, University of Calgary, Calgary, Canada
Stefan Kern
Integrated Climate Data Center (ICDC), Center for Earth System Research and
Sustainability (CEN), University of Hamburg, Hamburg, Germany
Leif Toudal Pedersen
National Space Institute, Technical University of Denmark, Lyngby, Denmark
Julienne Stroeve
Center for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment,
Earth, and Resources, University of Manitoba, Winnipeg, Canada
Earth Sciences, University College London, London, UK
Related authors
Wiebke Margitta Kolbe, Rasmus T. Tonboe, and Julienne Stroeve
Earth Syst. Sci. Data, 16, 1247–1264, https://doi.org/10.5194/essd-16-1247-2024, https://doi.org/10.5194/essd-16-1247-2024, 2024
Short summary
Short summary
Current satellite-based sea-ice climate data records (CDRs) usually begin in October 1978 with the first multichannel microwave radiometer data. Here, we present a sea ice dataset based on the single-channel Electrical Scanning Microwave Radiometer (ESMR) that operated from 1972-1977 onboard NASA’s Nimbus 5 satellite. The data were processed using modern methods and include uncertainty estimations in order to provide an important, easy-to-use reference period of good quality for current CDRs.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022, https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary
Short summary
High-resolution clear-sky optical satellite imagery has rarely been used to evaluate satellite passive microwave sea-ice concentration products beyond case-study level. By comparing 10 such products with sea-ice concentration estimated from > 350 such optical images in both hemispheres, we expand results of earlier evaluation studies for these products. Results stress the need to look beyond precision and accuracy and to discuss the evaluation data’s quality and filters applied in the products.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Hoyeon Shi, Byung-Ju Sohn, Gorm Dybkjær, Rasmus Tage Tonboe, and Sang-Moo Lee
The Cryosphere, 14, 3761–3783, https://doi.org/10.5194/tc-14-3761-2020, https://doi.org/10.5194/tc-14-3761-2020, 2020
Short summary
Short summary
To estimate sea ice thickness from satellite freeboard measurements, snow depth information has been required; however, the snow depth estimate has been considered largely uncertain. We propose a new method to estimate sea ice thickness and snow depth simultaneously from freeboards by imposing a thermodynamic constraint. Obtained ice thicknesses and snow depths were consistent with airborne measurements, suggesting that uncertainty of ice thickness caused by uncertain snow depth can be reduced.
Vaishali Chaudhary, Julienne Stroeve, Vishnu Nandan, and Dustin Isleifson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2851, https://doi.org/10.5194/egusphere-2025-2851, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines how changing weather is affecting sea ice near the Arctic community of Tuktoyaktuk in Canada. Using satellite images and weather records, we found that stronger winds from certain directions are causing the sea ice to break more often in winter. These changes pose risks for local people who depend on stable ice for travel and hunting. Our findings help understand how climate change is making Arctic ice less reliable and more dangerous.
Franck Eitel Kemgang Ghomsi, Muharrem Hilmi Erkoç, Roshin P. Raj, Atinç Pirti, Antonio Bonaduce, Babatunde J. Abiodun, and Julienne Stroeve
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-6-2025, 393–397, https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-393-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-393-2025, 2025
Nicole A. Loeb, Alex Crawford, Brice Noël, and Julienne Stroeve
EGUsphere, https://doi.org/10.5194/egusphere-2025-995, https://doi.org/10.5194/egusphere-2025-995, 2025
Short summary
Short summary
This study examines how extreme precipitation days affect the seasonal mass balance (SMB) of land ice in Greenland and the Eastern Canadian Arctic in historical and future simulations. Past extreme precipitation led to higher SMB with snowfall. As temperatures rise, extreme precipitation may lead to the loss of ice mass as more extreme precipitation falls as rain rather than snow. Across the region, extreme precipitation becomes more important to seasonal SMB in the future, warmer climate.
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025, https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Short summary
Snow on sea ice is vital for near-shore sea ice geophysical and biological processes. Past studies have measured snow depths using the satellite altimeters Cryosat-2 and ICESat-2 (Cryo2Ice), but estimating sea surface height from leadless landfast sea ice remains challenging. Snow depths from Cryo2Ice are compared to in situ data after adjusting for tides. Realistic snow depths are retrieved, but differences in roughness, satellite footprints, and snow geophysical properties are identified.
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024, https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary
Short summary
Until recently, satellite data showed an increase in Antarctic sea ice area since 1979, but climate models simulated a decrease over this period. This mismatch was one reason for low confidence in model projections of 21st-century sea ice loss. We show that following low Antarctic sea ice in 2022 and 2023, we can no longer conclude that modelled and observed trends differ. However, differences in the manner of the decline mean that model sea ice projections should still be viewed with caution.
Ida Birgitte Lundtorp Olsen, Henriette Skourup, Heidi Sallila, Stefan Hendricks, Renée Mie Fredensborg Hansen, Stefan Kern, Stephan Paul, Marion Bocquet, Sara Fleury, Dmitry Divine, and Eero Rinne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-234, https://doi.org/10.5194/essd-2024-234, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Discover the latest advancements in sea ice research with our comprehensive Climate Change Initiative (CCI) sea ice thickness (SIT) Round Robin Data Package (RRDP). This pioneering collection contains reference measurements from 1960 to 2022 from airborne sensors, buoys, visual observations and sonar and covers the polar regions from 1993 to 2021, providing crucial reference measurements for validating satellite-derived sea ice thickness.
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024, https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
Short summary
The AutoICE challenge encouraged the development of deep learning models to map multiple aspects of sea ice – the amount of sea ice in an area and the age and ice floe size – using multiple sources of satellite and weather data across the Canadian and Greenlandic Arctic. Professionally drawn operational sea ice charts were used as a reference. A total of 179 students and sea ice and AI specialists participated and produced maps in broad agreement with the sea ice charts.
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024, https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Short summary
The total Arctic sea-ice area (SIA), which is an important climate indicator, is routinely monitored with the help of satellite measurements. Uncertainties in observations of sea-ice concentration (SIC) partly cancel out when summed up to the total SIA, but the degree to which this is happening has been unclear. Here we find that the uncertainty daily SIA estimates, based on uncertainties in SIC, are about 300 000 km2. The 2002 to 2017 September decline in SIA is approx. 105 000 ± 9000 km2 a−1.
Wiebke Margitta Kolbe, Rasmus T. Tonboe, and Julienne Stroeve
Earth Syst. Sci. Data, 16, 1247–1264, https://doi.org/10.5194/essd-16-1247-2024, https://doi.org/10.5194/essd-16-1247-2024, 2024
Short summary
Short summary
Current satellite-based sea-ice climate data records (CDRs) usually begin in October 1978 with the first multichannel microwave radiometer data. Here, we present a sea ice dataset based on the single-channel Electrical Scanning Microwave Radiometer (ESMR) that operated from 1972-1977 onboard NASA’s Nimbus 5 satellite. The data were processed using modern methods and include uncertainty estimations in order to provide an important, easy-to-use reference period of good quality for current CDRs.
Alistair Duffey, Robbie Mallett, Peter J. Irvine, Michel Tsamados, and Julienne Stroeve
Earth Syst. Dynam., 14, 1165–1169, https://doi.org/10.5194/esd-14-1165-2023, https://doi.org/10.5194/esd-14-1165-2023, 2023
Short summary
Short summary
The Arctic is warming several times faster than the rest of the planet. Here, we use climate model projections to quantify for the first time how this faster warming in the Arctic impacts the timing of crossing the 1.5 °C and 2 °C thresholds defined in the Paris Agreement. We show that under plausible emissions scenarios that fail to meet the Paris 1.5 °C target, a hypothetical world without faster warming in the Arctic would breach that 1.5 °C target around 5 years later.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023, https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Short summary
During 1979–2020, four winter polynyas occurred in December 1986 and February 2011, 2017, and 2018 north of Greenland. Instead of ice melting due to the anomalous warm air intrusion, the extreme wind forcing resulted in greater ice transport offshore. Based on the two ensemble runs, representing a 1980s thicker ice vs. a 2010s thinner ice, a dominant cause of these winter polynyas stems from internal variability of atmospheric forcing rather than from the forced response to a warming climate.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022, https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary
Short summary
High-resolution clear-sky optical satellite imagery has rarely been used to evaluate satellite passive microwave sea-ice concentration products beyond case-study level. By comparing 10 such products with sea-ice concentration estimated from > 350 such optical images in both hemispheres, we expand results of earlier evaluation studies for these products. Results stress the need to look beyond precision and accuracy and to discuss the evaluation data’s quality and filters applied in the products.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021, https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
Short summary
Recent observations in the Arctic suggest a significant shift towards a snow–ice regime caused by deep snow on thin sea ice which may result in a flooding of the snowpack. These conditions cause the brine wicking and saturation of the basal snow layers which lead to a subsequent underestimation of snow depth from snow radar mesurements. As a consequence the calculated sea ice thickness will be biased towards higher values.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Hoyeon Shi, Byung-Ju Sohn, Gorm Dybkjær, Rasmus Tage Tonboe, and Sang-Moo Lee
The Cryosphere, 14, 3761–3783, https://doi.org/10.5194/tc-14-3761-2020, https://doi.org/10.5194/tc-14-3761-2020, 2020
Short summary
Short summary
To estimate sea ice thickness from satellite freeboard measurements, snow depth information has been required; however, the snow depth estimate has been considered largely uncertain. We propose a new method to estimate sea ice thickness and snow depth simultaneously from freeboards by imposing a thermodynamic constraint. Obtained ice thicknesses and snow depths were consistent with airborne measurements, suggesting that uncertainty of ice thickness caused by uncertain snow depth can be reduced.
Cited articles
Aldenhoff, W., Heuzé, C., and Eriksson, L.: Sensitivity of radar altimeter
waveform to changes in sea ice type at resolution of synthetic aperture
radar, Remote Sens.-Basel, 11, 2602, https://doi.org/10.3390/rs11222602, 2019.
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010.
Armitage, T. and Ridout, A.: Arctic sea ice freeboard from AltiKa and
comparison with CryoSat-2 and Operation IceBridge, Geophys. Res. Lett., 42, 6724–6731, 2015.
Barber, D. G. and Nghiem, S. V.: The role of snow on the thermal dependence of microwave backscatter over sea ice, J. Geophys. Res.-Oceans, 104, 25789–25803, 1999.
Barber, D. G., Fung, A. K., Grenfell, T. C., Nghiem, S. V., Onstott, R. G.,
Lytle, V. I., Perovich, D. K., and Gow, A. J.: The role of snow on microwave
emission and scattering over first-year sea
ice, IEEE T. Geosci. Remote, 36, 1750–1763, https://doi.org/10.1109/36.718643, 1998.
Beaven, S. G., Lockhart, G. L., Gogineni, S. P., Hosseinmostafa, A. R.,
Jezek, K., Gow, A. J., Perovich, D. K., Fung, A. K., and Tjuatja, S.: Laboratory
measurements of radar backscatter from bare and snow-covered saline ice
sheets, Int. J. Remote Sens., 16, 851–876, 1995.
Davis, C. H.: A robust threshold retracking algorithm for measuring
ice-sheet surface elevation change from satellite radar
altimeters, IEEE T. Geosci. Remote, 35, 974–979, 1997.
Drinkwater, M. R. and Crocker, G. B.: Modelling changes in scattering
properties of the dielectric and young snow-covered sea ice at GHz
frequencies, J. Glaciol., 34, 274–282, 1988.
Fetterer, F. M., Drinkwater, M. R., Jezek, K. C., Laxon, S. W. C., Onstott,
R. G., and Ulander, L. M. H.: Sea ice altimetry, in: Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68, edited by: Carsey, F. D.,
American Geophysical Union, Washington D.C., USA, 111–135, https://doi.org/10.1029/GM068, 1992.
Frankenstein, G. and Garner, R.: Equations for determining the brine volume of sea ice from −0.5 to −22.9 ∘C, J. Glaciol., 6, 943–944, 1967.
Geldsetzer, T., Mead, J. B., Yackel, J. J. Scharien, R. K., and Howell, S. E. L.: Surface-based
polarimetric C-band scatterometer for field measurements of sea ice, IEEE T. Geosci.
Remote, 45, 3405–3416, https://doi.org/10.1109/TGRS.2007.907043, 2007.
Guerreiro, K., Fleury, S., Zakharova, E., Rémy, R., and Kouraev, A.:
Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and
SARAL/AltiKa missions, Remote Sens. Environ., 186, 339–349, 2016.
Hendricks, S., Stenseng, L., Helm, V., and Haas, C.: Effects of surface
roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar
altimeter, in: IEEE International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, USA, 25–30 July, 3126–3129, 2010.
Iacozza, J. and Barber, D. G.: An examination of the distribution of snow on
sea-ice, Atmos. Ocean, 37, 21–51, 1999.
Kern, M., Cullen, R., Berruti, B., Bouffard, J., Casal, T., Drinkwater, M. R., Gabriele, A., Lecuyot, A., Ludwig, M., Midthassel, R., Navas Traver, I., Parrinello, T., Ressler, G., Andersson, E., Martin-Puig, C., Andersen, O., Bartsch, A., Farrell, S., Fleury, S., Gascoin, S., Guillot, A., Humbert, A., Rinne, E., Shepherd, A., van den Broeke, M. R., and Yackel, J.: The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission, The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, 2020.
King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., and Beckers, J.: Local-scale variability of snow density on Arctic sea ice, The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, 2020.
Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth on
Arctic sea ice from Operation IceBridge, Geophys. Res. Lett., 38,
L20505, https://doi.org/10.1029/2011GL049216, 2011.
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting, The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014.
Kwok, R.: Simulated effects of a snow layer on retrieval of CryoSat-2 sea
ice freeboard, Geophys. Res. Lett., 41, 5014–5020, 2014.
Kwok, R. and Kacimi, S.: Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2, The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, 2018.
Kwok, R., Panzer, B., Leuschen, C., Pang, S., Markus, T., Holt, B., and Gogineni, S. P.:
Airborne surveys of snow depth over Arctic Sea ice, J. Geophys. Res., 116, C11018,
https://doi.org/10.1029/2011JC007371, 2011.
Landy, J. C., Tsamados, M., and Scharien, R. K.: A Facet-Based Numerical Model for Simulating SAR Altimeter Echoes from Heterogeneous Sea Ice Surfaces, IEEE T. Geosci. Remote, 57, 4164–4180, 2019.
Landy, J. C., Petty, A. A., Tsamados, M., and Stroeve, J. C.: Sea ice roughness
overlooked as a key source of uncertainty in CryoSat-2 ice freeboard
retrievals, J. Geophys. Res.-Oceans, 125, e2019JC015820, https://doi.org/10.1029/2019JC015820, 2020.
Langlois, A., Royer, A., Montpetit, B., Pichard, G., Brucker, L., Arnaud,
L., Harvey-Collard, P., Fily, M., and Goïta, K.: On the relationship
between snow grain morphology and in situ near infrared calibrated
reflectance photographs, Cold Reg. Sci. Technol., 61, 34–42, 2010.
Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T. W. K., and Ridout, A. L.: Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards, The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, 2018.
Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice thickness in the
Arctic region, Nature, 425, 947–950, https://doi.org/10.1038/nature02050, 2003.
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R.,
Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S.,
Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737, https://doi.org/10.1002/grl.50193, 2013.
Laxon, S. W., Toudal Pedersen, L., and Lavergne, T.: Database for Task 2, Doc Ref: SICCI-DBT2-06-16, Version: 2.0, available at:
https://ftp.spacecenter.dk/pub/SICCI/ (last access: 29 March 2021), 2016.
Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen, S. H., Reinking, A.
K., and Elder, K.: A Lagrangian snow‐evolution system for sea‐ice applications
(SnowModel‐LG): Part I – Model description, J. Geophys. Res.-Oceans,
125, e2019JC015913, https://doi.org/10.1029/2019JC015913, 2020.
Maheshwari, M., Mahesh, C., Rajkumar, K. S., Pallipad, J., Rajak, D. R.,
Oza, S. R., Kumar, R., and Sharma, R.: Estimation of sea ice freeboard from
SARAL/AltiKa data, Mar. Geod., 38, 487–496, 2015.
Mallett, R. D. C., Lawrence, I. R., Stroeve, J. C., Landy, J. C., and Tsamados, M.: Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates, The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, 2020.
Mätzler, C.: Improved Born approximation for scattering of radiation in
a granular medium, J. Appl. Phys., 83, 6111–6117, 1998.
Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell,
S., King, J., Ricker, R., and Else, B.: Effect of Snow Salinity on CryoSat-2
Arctic First-Year Sea Ice Freeboard Measurements, Geophys. Res. Lett., 44, 10419–10426, https://doi.org/10.1002/2017GL074506, 2017a.
Nandan, V., Scharien, R., Geldsetzer, T., Mahmud, M., Yackel, J. J., Islam,
T., and Duguay, C.: Geophysical and atmospheric controls on Ku-, X- and C-band backscatter evolution from a saline snow cover on first-year sea ice from late-winter to pre-early melt, Remote Sens. Environ., 198, 425–441, 2017b.
Nandan, V., Scharien, R. K., Geldsetzer, T., Kwok, R., Yackel, J. J.,
Mahmud, M., Rösel, A., Tonboe, R., Granskog, M., Willatt, R., Stroeve,
J., Nomura, P., and Frey, M.: Snow Property Controls on Modeled Ku-Band Altimeter
Estimates of First-Year Sea Ice Thickness: Case Studies From the Canadian
and Norwegian Arctic, IEEE J. Sel. Top. Appl., 13, 1082–1096, 2020.
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, 2014.
Ricker, R., Hendricks, S., Helm, V., and Gerdes, R.: Impact of snow accumulation
on CryoSat-2 range retrievals over Arctic sea ice: An observational approach
with buoy data, Geophys. Res. Lett., 42, 4447–4455, 2015.
Ridley, J. K. and Partington, K. C.: A model of satellite radar return from ice sheets, Int. J. Remote Sens., 9, 601–624, 1988.
Stroeve, J. and Notz, D.: Changing state of Arctic Sea Ice across all seasons, Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56, 2018.
Stroeve, J., Nandan, V., Willatt, R., Tonboe, R., Hendricks, S., Ricker, R., Mead, J., Mallett, R., Huntemann, M., Itkin, P., Schneebeli, M., Krampe, D., Spreen, G., Wilkinson, J., Matero, I., Hoppmann, M., and Tsamados, M.: Surface-based Ku- and Ka-band polarimetric radar for sea ice studies, The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, 2020.
Tilling, R., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice thickness and volume using Cryosat-2 radar altimeter
data, Adv. Space Res., 62, 1203–1225, 2018.
Tonboe, R. T.: Radar backscatter modelling for sea ice radar altimetry, DMI
report 17–17, 19 pp., available at: https://www.dmi.dk/fileadmin/user_upload/Rapporter/TR/2017/DMIRep17-17_rtt.pdf (29 March 2021), 2017.
Tonboe, R. T., Andersen, S., Gill, R. S., and Toudal Pedersen, L.: The simulated seasonal variability of the Ku-band radar altimeter effective scattering surface depth in sea ice, in: Arctic Sea Ice Thickness: Past, Present and Future, edited by: Wadhams and Amanatidis, Climate Change and Natural Hazards Series, 10, 57–63, EUR 22416 EN, ISBN 92-79-02803-0, Brussels, Belgium, available at: https://op.europa.eu/en/publication-detail/-/publication/73a475e1-ba53-4fe7-8f79-dc9b8d59f295 (last access: 29 March 2021), 2006a.
Tonboe, R. T., Andersen, S., and Toudal Pedersen, L.: Simulation of the Ku-band radar altimeter sea ice
signal, IEEE Geosci. Remote S., 3, 237–240, 2006b.
Tonboe, R. T., Pedersen, L. T., and Haas, C.: Simulation of the Cryosat-2
satellite radar altimeter sea ice thickness retrieval
uncertainty, Can. J. Remote Sens., 36, 55–67, 2010.
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave Remote Sensing, From
Theory to Applications, Artech House, Dedham, Massachusetts, USA, vol. 3, 1986.
Ulander, L. M. H. and Carlström, A.: Radar backscatter signatures of Baltic sea ice, in: Proceedings of the IGARSS'91 Remote Sensing: Global Monitoring for Earth Management, IEEE, Espoo, Finland, 3–6 June 1991, 1215–1218, https://doi.org/10.1109/IGARSS.1991.579290, 1991.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N.
N., Aleksandrov, Y. I., and Colony, R.: Snow depth on Arctic sea
ice, J. Climate, 12, 1814–1829, 1999.
Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L.,
Perovich, D. K., and Sturm, M.: Inter-decadal changes in snow depth on Arctic
sea ice, J. Geophys. Res.-Oceans, 119, 5395–5406,
https://doi.org/10.1002/2014JC009985, 2014.
Webster, M. A., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., and Sturm, M.: Snow in the changing sea-ice systems, Nat. Clim. Change, 8, 946–953, 2018.
Yackel, J. J. and Barber, D. G.: Observations of snow water equivalent change
on landfast first-year sea ice in winter using synthetic aperture radar
data, IEEE T. Geosci. Remote, 45, 1005–1015, 2007.
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
A relationship between the Ku-band radar scattering horizon and snow depth is found using a...