Articles | Volume 15, issue 3
The Cryosphere, 15, 1551–1565, 2021
https://doi.org/10.5194/tc-15-1551-2021
The Cryosphere, 15, 1551–1565, 2021
https://doi.org/10.5194/tc-15-1551-2021

Research article 26 Mar 2021

Research article | 26 Mar 2021

Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery

Stephan Paul and Marcus Huntemann

Related authors

Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative
Stephan Paul, Stefan Hendricks, Robert Ricker, Stefan Kern, and Eero Rinne
The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018,https://doi.org/10.5194/tc-12-2437-2018, 2018
Short summary
Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea
Andreas Preußer, Günther Heinemann, Sascha Willmes, and Stephan Paul
The Cryosphere, 10, 3021–3042, https://doi.org/10.5194/tc-10-3021-2016,https://doi.org/10.5194/tc-10-3021-2016, 2016
Short summary
Long-term coastal-polynya dynamics in the southern Weddell Sea from MODIS thermal-infrared imagery
S. Paul, S. Willmes, and G. Heinemann
The Cryosphere, 9, 2027–2041, https://doi.org/10.5194/tc-9-2027-2015,https://doi.org/10.5194/tc-9-2027-2015, 2015
Short summary
Thin-ice dynamics and ice production in the Storfjorden polynya for winter seasons 2002/2003–2013/2014 using MODIS thermal infrared imagery
A. Preußer, S. Willmes, G. Heinemann, and S. Paul
The Cryosphere, 9, 1063–1073, https://doi.org/10.5194/tc-9-1063-2015,https://doi.org/10.5194/tc-9-1063-2015, 2015
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Satellite altimetry detection of ice-shelf-influenced fast ice
Gemma M. Brett, Daniel Price, Wolfgang Rack, and Patricia J. Langhorne
The Cryosphere, 15, 4099–4115, https://doi.org/10.5194/tc-15-4099-2021,https://doi.org/10.5194/tc-15-4099-2021, 2021
Short summary
MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021,https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021,https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Spaceborne infrared imagery for early detection of Weddell Polynya opening
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021,https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021,https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary

Cited articles

Ackerman, S., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and Menzel, P.: MODIS Atmosphere L2 Cloud Mask Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, Greenbelt, USA, https://doi.org/10.5067/MODIS/MOD35_L2.006, 2015. a
Adams, S., Willmes, S., Schröder, D., Heinemann, G., Bauer, M., and Krumpen, T.: Improvement and Sensitivity Analysis of Thermal Thin-Ice Thickness Retrievals, IEEE T. Geosci. Remote, 51, 3306–3318, 2013. a, b
Allaire, J. and Chollet, F.: keras: R Interface to “Keras”, r package version 2.3.0.0, available at: https://CRAN.R-project.org/package=keras, last access: 29 October 2020. a, b
Atkinson, P. M. and Tatnall, A. R. L.: Introduction Neural networks in remote sensing, Int. J. Remote Sens., 18, 699–709, https://doi.org/10.1080/014311697218700, 1997. a, b, c, d
Aulicino, G., Sansiviero, M., Paul, S., Cesarano, C., Fusco, G., Wadhams, P., and Budillon, G.: A New Approach for Monitoring the Terra Nova Bay Polynya through MODIS Ice Surface Temperature Imagery and Its Validation during 2010 and 2011 Winter Seasons, Remote Sens., 10, 366, https://doi.org/10.3390/rs10030366, 2018. a
Download
Short summary
Cloud cover in the polar regions is difficult to identify at night when using only thermal-infrared data. This is due to occurrences of warm clouds over cold sea ice and cold clouds over warm sea ice. Especially the standard MODIS cloud mask frequently tends towards classifying open water and/or thin ice as cloud cover. Using a neural network, we present an improved discrimination between sea-ice, open-water and/or thin-ice, and cloud pixels in nighttime MODIS thermal-infrared satellite data.