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Abstract. The frequent presence of cloud cover in polar
regions limits the use of the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and similar instruments for
the investigation and monitoring of sea-ice polynyas com-
pared to passive-microwave-based sensors. The very low
thermal contrast between present clouds and the sea-ice sur-
face in combination with the lack of available visible and
near-infrared channels during polar nighttime results in defi-
ciencies in the MODIS cloud mask and dependent MODIS
data products. This leads to frequent misclassifications of
(i) present clouds as sea ice or open water (false negative)
and (ii) open-water and/or thin-ice areas as clouds (false pos-
itive), which results in an underestimation of actual polynya
area and subsequently derived information. Here, we present
a novel machine-learning-based approach using a deep neu-
ral network that is able to reliably discriminate between
clouds, sea-ice, and open-water and/or thin-ice areas in a
given swath solely from thermal-infrared MODIS channels
and derived additional information. Compared to the refer-
ence MODIS sea-ice product for the year 2017, our data
result in an overall increase of 20 % in annual swath-based
coverage for the Brunt Ice Shelf polynya, attributed to an
improved cloud-cover discrimination and the reduction of
false-positive classifications. At the same time, the mean an-
nual polynya area decreases by 44 % through the reduction of
false-negative classifications of warm clouds as thin ice. Ad-
ditionally, higher spatial coverage results in an overall better
subdaily representation of thin-ice conditions that cannot be

reconstructed with current state-of-the-art cloud-cover com-
pensation methods.

1 Introduction

Information on cloud presence is of crucial importance when
using thermal-infrared imagery. This is especially true for
the polar regions, where the thermal contrast between clouds
and the underlying snow and sea-ice surface can be low
through persistent surface temperature inversion and low
clouds (Welch et al., 1992). Furthermore, occurrences of
warm clouds over cold sea ice and cold clouds over relatively
warm and thin sea ice are both possible. Despite improve-
ments (Liu et al., 2004; Frey et al., 2008; Holz et al., 2008;
Liu and Key, 2014), the performance of the frequently used
Moderate Resolution Imaging Spectroradiometer (MODIS)
cloud mask product (MOD35/MYD35; Ackerman et al.,
2015) is substantially reduced during polar nighttime com-
pared to its performance during daytime conditions.

Nonetheless, several studies use MODIS thermal-infrared
(TIR) data to monitor polynya area and associated sea-ice
production in polynyas both in the Arctic as well as the
Antarctic and compare well to or even outperform studies us-
ing passive-microwave satellite data in certain regions (e.g.,
Paul et al., 2015; Aulicino et al., 2018; Preußer et al., 2019).
These studies generally utilize ice-surface temperature from
the National Snow and Ice Data Center (NSIDC) sea-ice
product (MOD/MYD29; Hall et al., 2004; Hall and Riggs,
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Figure 1. Location of the general (orange) and focus (purple) study
area of the Antarctic Brunt Ice Shelf in the southeastern Wed-
dell Sea (green). Data of land ice (dark gray) and floating ice
shelves (light gray) are retrieved from RTopo-2 (Refined Topogra-
phy; Schaffer et al., 2016).

2015a, b). The MOD/MYD29 product is derived from both
MODIS sensors on board the NASA polar-orbiting Aqua and
Terra satellites with the MOD/MYD35 cloud mask product
already applied (Riggs and Hall, 2015). However, especially
positive temperature-anomaly features such as large warm
open-water areas through sea-ice polynyas pose a problem
for the MODIS cloud mask and result in frequent misclassifi-
cation of these areas as cloud cover (Fraser et al., 2009). Ad-
ditionally, other MODIS applications would potentially ben-
efit from an improved wintertime cloud masking. These ap-
plications comprise composite generation (e.g., Fraser et al.,
2010, 2020), merged optical and passive microwave sensor
applications (e.g., Ludwig et al., 2019), basin-wide lead de-
tection from thermal-infrared data (e.g., Reiser et al., 2020),
and sea-ice motion tracking through image cross-correlation.

In this study, we propose a novel machine-learning-based
approach to discriminate between open-water and/or thin-
ice, sea-ice, and cloud-covered areas in MODIS TIR swaths.
We evaluate and analyze the use of a deep neural net-
work (e.g., Kohonen, 1988; Goodfellow et al., 2016), build-
ing upon a comprehensive set of newly generated labeled
training data. The data set is derived using a combined ap-
proach of unsupervised deep learning, subsequent cluster-
ing, and manual screening from co-located 1 km resolution
MOD/MYD02 product data (MODIS Characterization Sup-
port Team (MCST), 2017a, b) accessed through the Level-1
and Atmosphere Archive & Distribution System (LAADS)
Distributed Active Archive Center (DAAC) and the Sentinel-
1 A/B (S1-A/B) synthetic aperture radar (SAR) calibrated
backscatter data accessed through the Alaska Satellite Facil-
ity (ASF) DAAC as a cloud-independent reference.

The resulting classifier performance is then analyzed and
evaluated based on wintertime estimates of the resulting
polynya area in comparison to the MOD/MYD29 reference
product for the Brunt Ice Shelf (BIS) region in the Antarctic
Weddell Sea in the year 2017 (Fig. 1). This region was cho-
sen for its combination of high inter-annual polynya activity
and high spatiotemporal coverage with Sentinel-1 data. Re-
sults are expected to be transferable to other polynya regions
in the Antarctic.

In the following sections, we will first describe our
methodology and input data starting with the employed ba-
sic methods and algorithms (Sect. 2.1) followed by the used
input data (Sect. 2.2), a detailed explanation of the initial-
training-data generation scheme (Sect. 2.3), and the sub-
sequent processing steps that lead to our final classifier
(Sect. 2.4 and 2.5). Finally, we describe and discuss our
results (Sect. 3) in comparison to standard MOD/MYD29-
derived estimates as well as using co-located S1-A/B SAR
reference data. In the end we provide a summary and an out-
look for future applications (Sect. 4).

2 Data and methods

In the following subsections we describe our methods and
input data that lead to our deep neural network for the open-
water–sea-ice–cloud discrimination (Fig. 2).

2.1 Basic methods and algorithms

This section intends to provide a basic introduction to the
methods used in this study. However, it would be beyond
the scope of this article to provide an exhaustive review of
these methods. For more details, additional references are
provided.

All computations for this study were carried out using the
R software (R Core Team, 2018) running on a commercially
available laptop.

2.1.1 Gray-level co-occurrence matrices (GLCMs)

Gray-level co-occurrence matrices (GLCMs) are a tool to
quantify spatial texture based on brightness values of a pixel
neighborhood (Haralick et al., 1973; Haralick, 1979; Hall-
Beyer, 2017; R: Zvoleff, 2019). The directional-dependent
occurrence frequencies of brightness-value combinations are
counted and normalized to probabilities. Subsequently, sev-
eral statistical measures can be calculated from the GLCM as
an additional descriptive statistic of the data.

Haralick et al. (1973) proposed 14 different metrics; how-
ever, not all were commonly adopted and implemented into
modern software. For R, eight different measures are imple-
mented (Zvoleff, 2019), of which we utilized four: GLCM
mean, GLCM variance, contrast, and entropy (Table 1).

Hall-Beyer (2017) showed that GLCM variance can be as-
sociated with edges of different class patches, while GLCM
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Figure 2. Flow chart summarizing all processing steps from the generation of the initial training data through manual classification of the
swath-based split of the data into a calibration and a validation data set (Cal/Val) to the training of the final classifier and its application for
open-water–sea-ice–cloud discrimination.

mean and contrast and entropy correspond well to patch-
interior texture.

In general, the use of GLCM texture metrics is suitable
for cloud detection and classification in polar regions us-
ing visual, near-infrared, and thermal-infrared satellite data
(Welch et al., 1992). However, as the size of each GLCM per
pixel in a sliding-neighborhood window corresponds and in-
creases proportionally to the image bit depth, computational
cost increases rapidly for (i) large sliding windows and (ii) a
large number of gray levels in the input data. For our study,
all MOD/MYD02 channel-based input parameters for the
GLCM computations were rescaled to 32 gray levels, using
a 7× 7 sliding-neighborhood window with horizontal, verti-
cal, and diagonal directional pixel relationships.

2.1.2 Fuzzy c-means clustering (FCM)

For clustering of our initial training data, we utilize an unsu-
pervised procedure called fuzzy c-means clustering (FCM;
Dunn, 1973; Bezdek et al., 1984; R: Meyer et al., 2019).

The FCM is comparable to a classic k-means clustering
approach (MacQueen, 1967; Hartigan and Wong, 1979), with
the addition of providing cluster membership probabilities
for each pixel. This type of clustering is also referred to as
“soft” clustering. In contrast to “hard”-clustering approaches
such as k-means, FCM allows for a pixel to belong to several
clusters with a certain probability.

For this type of unsupervised clustering, it is necessary to
preselect the number of clusters which the input data should
be separated into. Without a priori knowledge about poten-
tial relationships and correlations between predictors, it is
common practice to choose a large number of initial clus-
ters and manually merge similar clusters afterwards to the
desired number of classes.

In this study, we always use a setup of 35 clusters and stop
the clustering process after 30 iterations.

2.1.3 Artificial neural networks (NNs)

An artificial neural network (NN) generally consists of sev-
eral neurons organized in sequential layers in which each
neuron of a layer is fully interconnected to all neurons in
the adjacent two layers through weighted paths. These neu-
rons respond to the weighted input of the preceding neurons
and pass on their output to the adjacent neurons, modulated
based on a type of activation function (Kohonen, 1988; Lee
et al., 1990; Welch et al., 1992; Atkinson and Tatnall, 1997;
LeCun et al., 2015; Schmidhuber, 2015; Goodfellow et al.,
2016; R: Allaire and Chollet, 2020).

Once trained, NNs are powerful tools for fast and effi-
cient processing of large amounts of remote sensing data
and have been shown to be more accurate, e.g., in classifica-
tion tasks, than other techniques (Kohonen, 1988; Lee et al.,
1990; Atkinson and Tatnall, 1997).

Furthermore, NNs can represent complex and non-linear
functions without formal description through learning from
labeled training data. In contrast to statistical methods, NNs
allow for incorporating data from different sources and re-
quire no knowledge or assumptions about their parametric
distributions. Hence, NNs solely depend on their provided
input data (Lee et al., 1990; Atkinson and Tatnall, 1997; Le-
Cun et al., 2015).

In their simplest form, a so-called “shallow” NN consists
of an input layer, a hidden layer, and an output layer. Input-
layer neurons correspond to the number of input features or
predictors, whereas output layer neurons correspond in the
case of classification tasks to the number of classes the input
data should be categorized into. With an increasing number
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of hidden layers, so-called “deep” NNs can handle even more
complex problems (Atkinson and Tatnall, 1997; Schmidhu-
ber, 2015).

While some general suggestions for the NN architecture
exist, solutions are often found empirically by minimizing
or maximizing the loss function or accuracy for both cali-
bration and validation data classification without overfitting
the model. This process is described in the following subsec-
tions.

In addition to these general NNs, we work with a second
type called an autoencoder (AE). An AE is a specialized vari-
ant of an NN used for anomaly detection and dimension re-
duction (Cao et al., 2018; Dong et al., 2018; R: Allaire and
Chollet, 2020).

In a typical AE, the output or target data are equal to the
input data. However, all information is forced through a bot-
tleneck hidden layer. The result relies on the capability of the
bottleneck hidden-layer neurons to extract relevant informa-
tion from the training data to enable the AE to reconstruct the
input image with minimized error (Cao et al., 2018).

This is achieved by constructing two branches of symmet-
ric hidden layers of neurons (called the encoder and the de-
coder, respectively) around a bottleneck neuron layer gener-
ally consisting of very few neurons (Cao et al., 2018). The
resulting encoder part of the AE can then be used for dimen-
sion reduction.

2.2 Input data

In total, we use four different types of data sets for the year
2017:

1. MODIS Level 1B calibrated radiances obtained from
the MODIS sensors on board the polar-orbiting NASA
satellites Terra and Aqua (MOD/MYD02; MODIS
Characterization Support Team (MCST), 2017a, b; re-
trieved from the LAADS DAAC at https://ladsweb.
modaps.eosdis.nasa.gov/, last access: 7 August 2019)
with a spatial resolution of 1 km× 1 km at nadir and
swath dimensions of 1354 km (across track)× 2030 km
(along track),

2. Sentinel-1 A/B Level 1 calibrated backscatter data (S1-
A/B; retrieved from the ASF DAAC at https://asf.
alaska.edu/, last access: 25 June 2019, and processed by
ESA) with a spatial resolution of 20 m× 20 m,

3. NSIDC MODIS sea-ice product (MOD/MYD29; Hall
et al., 2004; Riggs and Hall, 2015) in the same reso-
lution as the MOD/MYD02 data but comprising a pre-
computed and MODIS cloud-mask-applied ice-surface
temperature (IST) data set, and

4. ECMWF ERA-Interim atmospheric reanalysis data
(Dee et al., 2011) featuring a spatial resolution of 0.75◦

and a temporal resolution of 6 h.

An overview of all used input parameters with their re-
spective source as well as their application is provided in Ta-
ble 1.

All MODIS and ERA-Interim data are resampled to a
common equirectangular grid of the Brunt Ice Shelf (BIS)
area with an average spatial resolution of 1 km× 1 km and
an extent from 34 to 18◦W and 77 to 73◦ S using a nearest-
neighbor approach. For visual reference, the S1-A/B data are
also resampled to an equirectangular grid with the same ex-
tent but a spatial resolution of 25 m. Through the decreasing
distance between meridians towards the pole, the per-pixel
spatial area also decreases. This results from the constant lat-
itudinal distance between grid points in this type of projec-
tion. Ice-shelf areas are excluded from our analysis based on
RTopo-2 data (Schaffer et al., 2016).

2.2.1 MOD/MYD02 L1b calibrated radiances

Our goal for the later discrimination algorithm was for it to
solely rely on MODIS-channel data, without the need for any
auxiliary data.

Brightness temperatures (BTs) were calculated from cal-
ibrated radiances comprising MODIS channels 20, 25, 31,
and 33 following Toller et al. (2009). This channel subset al-
lows for distinguishing between open-water and/or thin-ice,
sea-ice, and cloud pixels through a high inter-channel vari-
ability while reducing the impact of stripes in the MODIS
data. Additionally, channel 32 data are used for the calcu-
lation of the ice-surface temperature (IST; following Riggs
and Hall, 2015). Furthermore, we computed image-texture
parameters using GLCM (Table 1). For this we use MODIS
Collection 6.1 data.

We generally limited our study to swaths featuring sensor
incidence angles of ≤ 50◦ in 65 % of the study area (to min-
imize spatial distortion towards the swath edges) and a total
coverage of our study area of > 90 %. In order to aid the
manual categorization by providing favorable geometries,
the MODIS colocation swath to the S1-A/B reference data
needs to feature sensor incidence angles of ≤ 35◦ in 65 % of
the study area.

2.2.2 MOD/MYD29 sea-ice product

For a later comparison based on cloud coverage and polynya
area, we extracted and use IST from the reference NSIDC
MOD/MYD29 sea-ice product produced from MODIS Col-
lection 6 data, which offers an overall accuracy of 1–3 K un-
der ideal (i.e., clear-sky) conditions (Hall et al., 2004; Riggs
and Hall, 2015).

Both IST values (MOD/MYD02 and MOD/MYD29) are
derived based on a constant emissivity for snow or ice (Hall
et al., 2015) but with the MODIS cloud mask already applied
to the MOD/MYD29 product.
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Table 1. Summary of all used parameters, their source product or sensor, and their application in this study. These parameters comprise the
brightness temperature (BT) from the selected MOD/MYD02 channel subseta as well as normalized BT (BTnorm

b). Furthermore, ice-surface
temperatures (IST) from MOD/MYD02 are presented together with the IST from neighboring swaths (ISTNeighbors) and the time-normalized
IST change (IST1t ) between them as well as the IST from the MOD/MYD29 product. The texture metrics calculated from GLCM (mean,
variance, contrast, and entropy) as well as the calibrated backscatter (σ 0) from Sentinel-1 A/B are given as a reference (R). Finally, the
atmospheric parameters taken from the ERA-Interim reanalysis necessary for the calculation of thin-ice thickness (TIT) are presented. The
applications comprise primarily their use in the training of the neural network (NN) and autoencoder (AE).

Symbol or abbreviation Parameter Source Application

BTa Brightness temperatures MOD/MYD02 AE/NN
BTnorm

a,b Normalized brightness temperatures MOD/MYD02 AE/NN
IST Ice-surface temperature MOD/MYD02 AE/NN + TIT
ISTNeighbors Ice-surface temperature of neighboring swaths MOD/MYD02 AE/NN
IST1t Time-normalized ice-surface temperature MOD/MYD02 AE/NN

difference to neighboring swaths
GLCMMean

a Mean of the GLCM MOD/MYD02 AE/NN
GLCMVar

a Variance of the GLCM MOD/MYD02 AE/NN
GLCMCon

a Contrast of the GLCM MOD/MYD02 AE/NN
GLCMEnt

a Entropy of the GLCM MOD/MYD02 AE/NN

IST Ice-surface temperature MOD/MYD29 TIT

σ 0 Calibrated backscatter S1-A/B R

T 2m 2 m temperature ERA-Interim TIT
Td2m 2 m dew-point temperature ERA-Interim TIT
mslp Mean sea-level pressure ERA-Interim TIT
u10m 10 m u wind component ERA-Interim TIT
v10m 10 m v wind component ERA-Interim TIT

AE/NN: autoencoder or neural network; R: reference; TIT: thin-ice thickness calculation. a Calculated or derived for MODIS channels 20, 25,
31, and 33; b normalized through swath-wide mean and standard deviation: BTnorm =

(
BT−BT

)
× σ−1

BT .

2.2.3 S1-A/B L1 calibrated backscatter

In order to reliably identify polynyas independent of cloud
cover or other atmospheric disturbances, we selected a total
of 22 S1-A/B swaths featuring an active polynya in front of
the BIS.

These S1-A/B swaths together with co-located and at least
partially cloud-free MOD/MYD02 data are used for calibra-
tion and validation of the algorithm. S1-A/B swath acquisi-
tion times are temporarily distributed over the 2017 Antarc-
tic winter, with all additional information summarized in Ta-
ble 2.

2.2.4 ERA-Interim data and thin-ice retrieval

For a quantitative comparison between the resulting polynya
area (i.e., the total area of pixels covered with a maximum ice
thickness of 0.2 m), we calculate the thin-ice thickness (TIT)
from MODIS IST for MOD/MYD02 and MOD/MYD29
data using a surface-energy-balance model together with the
ERA-Interim 2 m air temperature, the 10 m wind-speed com-
ponents, the mean sea-level pressure, and the 2 m dew-point
temperature (Dee et al., 2011).

The surface-energy-balance model utilizes the inversely
proportional relation between IST and the thickness of thin

sea ice (Yu and Rothrock, 1996; Drucker et al., 2003). The
net positive flux towards the atmosphere between the warm
ocean and the cold atmosphere is equalized from the conduc-
tive heat flux through the ice. From the conductive heat flux
TIT is derived. A detailed description of the retrieval proce-
dure and all equations and necessary assumptions are thor-
oughly described in Paul et al. (2015) as well as Adams et al.
(2013). For ice thicknesses between 0.0 and 0.2 m, Adams
et al. (2013) state an average uncertainty of ±4.7 cm.

2.3 Initial-training-data generation

The availability and quality of labeled training data are of ut-
most importance for the training of any supervised machine-
learning algorithm. However, available spatiotemporal high-
resolution cloud information over nighttime sea ice is prac-
tically non-existent. Therefore, we had to derive our own la-
beled training data using co-located MODIS and S1-A/B data
to manually identify open-water and/or thin-ice, sea-ice, and
cloud pixels, respectively (Fig. 2a).

To reduce manual effort and uncertainty to a minimum,
we employ a mix of dimension reduction and unsupervised
clustering before the final manual categorization.

First, we selected MODIS swaths in close temporal prox-
imity for each of the 22 S1-A/B reference swaths (Table 2),
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Figure 3. Exemplary generation of labeled training data with a reference Sentinel-1 A/B calibrated-backscatter image (in dB; a), MOD02-
derived ice-surface temperature (in K; b), an exemplary subset of 9 clusters out of the 35 total clusters from the used autoencoder and fuzzy
c-means clustering before (c) and after (d) manual categorization and quality control (d; thin-ice or open-water, TOW; clouds, CLD; sea ice,
ICE), the final training based on the generalizing NN (e), and the resulting classification based on the final OSCD (open-water–sea-ice–cloud
discrimination) algorithm (f). Land-ice (dark gray) and ice-shelf (light gray) overlays originate from RTopo-2 (Schaffer et al., 2016). In (c),
clusters 20 and 24 were categorized as cloud; clusters 1, 3, 25, 28, and 30 were categorized as open water and/or thin ice; and clusters 19 and
33 were categorized as sea ice. Please note that the date format in this figure is year month day (yyyy-mm-dd).

i.e., in a temporal range of ±36 h around the S1-A/B swath.
We chose the best-temporal-match-based sensor zenith angle
(65 % of the study area feature an angle of ≤ 35 ◦) and swath
coverage of our study area (≥ 90 %). In this way, the data
represent rather easy-to-distinguish configurations of open-
water and/or thin-ice, sea-ice, and cloud pixels with favorable
geometries for manual categorization.

Secondly, in addition to the textural parameters from the
GLCM (Table 1), we wanted to add a temporal component
to the parameter mix. We added the IST of two swaths ac-
quired before and after the current swath, respectively. These
four swaths were taken from the pool of selected MODIS
swaths and arranged in temporal patterns before and after the
best match. Additionally, we added the time-normalized IST
difference between all these neighboring swaths.

From here, we take advantage of the AE dimension re-
duction capabilities (Fig. 2a). Instead of using the total num-
ber of 33 input parameters for the FCM with probably only
mediocre results (Table 1), we cluster the encoded informa-
tion from the bottleneck layer neurons swath-wise for all
MODIS co-locations. Subsequently, the FCM soft-clusters
similar pixels per swath into 35 clusters before we manu-
ally categorize these clusters into one of three classes, “open
water and/or thin ice”, “sea ice”, or “cloud”. An exemplary
sequence of this procedure is shown in Fig. 3a–d.

For this task of dimension reduction, we trained and subse-
quently used the encoder part of our autoencoder based on a
setting featuring a decreasing number of neurons per hidden

layer of 32, 16, and 8 down to the bottleneck layer contain-
ing 3 neurons. The decoder part is built symmetrically to the
encoder but in reversed order. We used a mean squared error
loss function and trained for 50 epochs using a batch size of
2048 with the ADAM optimizer (Kingma and Ba, 2017) for
all available co-located MODIS–S1-A/B combinations. For
a detailed explanation of these technical terms, please see
Goodfellow et al. (2016).

In order to reduce uncertainty in the training data, we
constrained the manual classification to “obvious” cases
(e.g., cold continuous patches over otherwise warm polynyas
and adjacent sea ice categorized as clouds), which results in
not every MOD/MYD02 swath being fully classified at this
stage (Fig. 3d).

Finally, from our manual categorization, we only use pix-
els with an FCM probability (i.e., the membership score)
above 0.6 for open-water and/or thin-ice pixels, 0.65 for sea-
ice pixels, and 0.65 for cloud pixels (Fig. 3d). As sea-ice or
cloud pixels are harder to identify, we chose a stricter prob-
ability threshold for those two classes. Due to the large tem-
perature range present in Antarctic clouds, we arbitrarily sep-
arated our cloud class internally into “cold” (< 235 K), “in-
termediate”, and “warm” (> 250 K) clouds. This separation
lead to an improved general classification result through the
neural network later on. All ice-shelf areas are excluded from
our analysis to avoid any additional misclassifications due to
the substantially different temperature regime.
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Table 2. List of used S1-A/B swaths for calibration or training, val-
idation, and a detailed analysis (Fig. 6).

Satellite Product Acquisition in UTC

Calibration or training

S1-B IW_GRDH_1SSH 2 April 2017 03:49:42
S1-A EW_GRDM_1SSH 10 April 2017 23:23:10
S1-A EW_GRDM_1SSH 7 April 2017 22:58:51
S1-A EW_GRDM_1SSH 18 May 2017 23:06:59
S1-A EW_GRDM_1SSH 28 May 2017 00:19:56
S1-A EW_GRDM_1SSH 28 May 2017 23:23:13
S1-A EW_GRDM_1SSH 21 June 2017 23:23:14
S1-A EW_GRDM_1SSH 3 July 2017 23:23:15
S1-A EW_GRDM_1SSH 8 July 2017 00:28:10
S1-A EW_GRDM_1SSH 8 July 2017 23:31:21
S1-B IW_GRDH_1SSH 31 July 2017 03:49:48
S1-A EW_GRDM_1SSH 8 August 2017 23:23:17
S1-B IW_GRDH_1SSH 19 August 2017 23:30:41
S1-A IW_GRDH_1SSH 1 September 2017 23:23:18
S1-A EW_GRDM_1SSH 20 September 2017 00:11:57
S1-A EW_GRDM_1SSH 25 September 2017 23:23:19

Validation

S1-A EW_GRDM_1SSH 7 April 2017 22:58:51
S1-B EW_GRDM_1SSH 9 April 2017 00:27:24
S1-A EW_GRDM_1SSH 11 May 2017 00:11:50
S1-A EW_GRDM_1SSH 20 July 2017 00:28:11
S1-A IW_GRDH_1SSH 6 August 2017 03:50:27
S1-A IW_GRDH_1SSH 11 September 2017 03:50:28

Example

S1-A EW_GRDM_1SSH 16 May 2017 23:23:12
S1-A EW_GRDM_1SSH 18 May 2017 23:06:59

Through this procedure, we created an initial labeled train-
ing data set consisting of about 3.5× 106 data points for the
33 predictors (Table 1). For the purpose of training the NN,
we divided the data into a training or calibration and a vali-
dation data set (Fig. 2b). As a random split would potentially
lead to highly autocorrelated neighboring pixels, we decided
for a swath-wise split with 16 swaths used for training or cal-
ibration and 6 swaths used for validation plus an additional
2 swaths for an additional analysis (Table 2).

2.4 Final-training-data generation

As mentioned, the initial training data set is based solely on
obvious cases that were manually categorized. This proce-
dure lead to only few data points per swath (Fig. 3d). In or-
der to (at least almost) fully classify all co-located MODIS
swaths and thereby extend our training data set, two simple
intermediate classifiers were trained to represent their respec-
tive initial training data set (i.e., calibration or validation) as
best as possible (Fig. 2c).

With this, we are able to extend our training data set by
identifying and classifying additional similar data points in

the complete set of co-located MODIS swaths that were pre-
viously not categorized. However, based on the class proba-
bilities provided by the two NNs and through visual screen-
ing, we excluded ambiguous pixels from the final training
data set (Fig. 3e). In this way, we get a statistically substanti-
ated classification of almost the complete swaths – in contrast
to the partially categorized swaths through manual classifica-
tion used before (Fig. 2c).

Through this procedure, we created our final labeled train-
ing data set of about 10.0× 106 and 3.1× 106 data points
comprising the 33 different predictors or parameters for cal-
ibration and validation, respectively (Table 1).

2.5 Training of the final classifier

We used this final training data set to train our final classi-
fier (Fig. 2d). This NN consists of 6 hidden layers containing
20 neurons each with activation functions for a leaky recti-
fied linear unit (leaky ReLU) while using a fixed batch size
of 2048, a learning rate of 1× 10−4, and a dropout rate of
20 % as well as weight decay in the form of an L2 param-
eter regularization (Goodfellow et al., 2016). Furthermore,
we used categorical cross-entropy loss and again the ADAM
optimizer (Kingma and Ba, 2017).

Our final open-water–sea-ice–cloud discrimination
(OSCD) classifier features an accuracy (the ratio of correctly
classified pixels to the total number of samples) of 90.8 %
and 84.3 % on the calibration and validation data set,
respectively. For our comparisons and the results, we always
merged all cloud subclasses to a single cloud class (Figs. 2e
and 3f).

3 Results and discussion

In the following, we describe and discuss the results from
using our open-water–sea-ice–cloud discrimination (OSCD)
product in comparison to the reference MOD/MYD29 sea-
ice product on the basis of a thin-ice thickness (TIT) esti-
mates (i) on a swath-to-swath basis, (ii) on the basis of daily
composites of all available swaths per day, and (iii) as a com-
parison of overall achieved coverage over a year (Fig. 2f).

3.1 Swath-based comparison

Representative comparisons between resulting the TIT from
OSCD and MOD/MYD29 swaths reveal substantial differ-
ences, especially in the high-temperature polynya and thin-
ice areas (PA; Figs. 4 and 5).

The S1-A/B reference data always feature a polynya sig-
nal in all our examples (Figs. 4a, e, and i and 5a, e, and i)
and these are (at least partially) represented by a warm IST
anomaly in the MODIS data (Figs. 4b, f, and j and 5b, f,
and j). While for some examples the difference in resulting
TIT between OSCD and MOD/MYD29 is comparably small
or negligible (Figs. 4g and h and 5c and d), substantial dif-
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Figure 4. Compilation of exemplary co-located S1-A/B calibrated backscatter (in dB) and MODIS swaths of ice-surface temperature (IST;
in K) and derived thin-ice thickness (TIT; in m) data (Table 3). Gray and green overlays highlight the ice-shelf extent. Manually picked
S1-A/B reference polynya extent is outlined by a dashed red line in all panels. Please note that the date format in this figure is year month
day (yyyy-mm-dd).

ferences appear for other examples (Figs. 4k and l, 5g and k,
and 5h and l).

For a better comparison, the polynyas were hand-picked
for the respective S1-A/B data in Figs. 4 and 5. The corre-
sponding absolute polynya areas are summarized in Table 3.
In addition to the respective numbers for each polynya, the
corresponding area covered in the S1-A/B extent is given in
parentheses. While there is some uncertainty due to the dif-
ferent grid resolutions (25 m vs. 1 km) as well as acquisition-
time difference and subsequent changes due to sea-ice drift,
this allows for a good quantification of the impact of erro-
neously classified cloud cover on the estimated TIT.

While there are correct and also corresponding cloud clas-
sifications in both MODIS products, the applied MODIS
cloud mask in the MOD/MYD29 product tends towards ad-
ditionally masking out strong positive temperature anomalies
(Figs. 4l and 5h and l). This happens frequently in the center
of the primary polynya around 27.4◦W and 76◦ S and leads
to substantial differences in PA estimates (Table 3).

Due to the strong temperature gradient between the warm
ocean and the cold atmosphere, turbulent exchange of sen-
sible and latent heat is large and can potentially lead to the
formation of sea fog and thin, low cloud cover (Gultepe et al.,
2003; Fraser et al., 2009). However, the temperature texture
in the open-water and/or thin-ice areas appears to be homo-
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Figure 5. Additional compilation of exemplary co-located S1-A/B and MODIS swaths in the same setup as Fig. 4. Gray and green overlays
highlight the ice-shelf extent. Manually picked S1-A/B reference polynya extent is outlined by a dashed red line in all panels. Please note
that the date format in this figure is year month day (yyyy-mm-dd).

Table 3. Summary of polynya area (PA; in km2) estimates between
S1-A/B (PAS1), OSCD (PAOSCD), and MOD/MYD29 (PAM29)
data. PA estimates in parentheses correspond to the PA retrieved
from MODIS for the S1-A/B polygon in Figs. 4 and 5.

Example PAS1 PAOSCD PAM29

Fig. 4a–d 903 106 (0) 714 (0)
Fig. 4e–h 2224 5620 (2136) 6897 (2122)
Fig. 4i–l 380 989 (355) 43 (16)
Fig. 5a–d 1093 892 (601) 841 (577)
Fig. 5e–h 1448 1945 (858) 3366 (534)
Fig. 5i–l 1425 1748 (1407) 1502 (245)

geneous and is likely not to be affected by either sea fog or
clouds to the extent suggested by the MOD/MYD29 product
through the MODIS cloud mask.

3.2 Daily-composite-based comparison

Based on the median TIT of all available MODIS swaths
per day, daily polynya area (PA) was computed (Paul et al.,
2015), and the difference between OSCD and MOD/MYD29
was calculated (i.e., OSCD minus MOD/MYD29; Fig. 6).

Scattering of OSCD and MOD/MYD29 daily PA estimates
against each other reveals a general tendency towards larger
PA estimates in MOD/MYD29 data (Fig. 6; top-left scat-
terplot inlet). However, there is also a strong seasonality in
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Figure 6. Daily polynya area difference in 103km2 using swath-wise pixel averages featuring a thin-ice thickness (TIT) ≤ 0.2 m between
OSCD and MOD/MYD29. Difference is calculated by subtracting MOD/MYD29 from OSCD; results with OSCD≥MOD/MYD29 are
shown in blue; results with OSCD<MOD/MYD29 are shown in red. Orange vertical bars highlight days with S1-A/B swath coverage used
for calibration or training of the OSCD algorithm. Green vertical bars show additional S1-A/B swaths used for validation between products
(Figs. 4 and 5). The top-left corner features a scatterplot of the daily polynya with MOD/MYD29 to OSCD. Additional information about
the S1-A/B swaths is provided in Table 2.

this MOD/MYD29 bias, which dominates from 1 April 2017
to mid May 2017, while OSCD estimates are predominately
larger than or equal to MOD/MYD29 between mid May and
30 September 2017 (Fig. 6). For the year 2017, about 64 %,
50.0 %, and 27 % of the differences of the absolute daily me-
dian PA are below 1000 km2, 500 km2, and 100 km2, respec-
tively.

On average, OSCD estimates the daily polynya area (PA)
between 1 April and 30 September 2017 to be 1.88×103 km2

in contrast to 2.69×103 km2 using MOD/MYD29 data (not
shown). This corresponds to an average daily mean PA which
is about 44 % smaller for OSCD compared to MOD/MYD29.

However, especially during freeze-up (i.e., between
1 April 2017 and mid May 2017), the differences are of-
tentimes very large (14.9×103 km2 on 17 May 2017) and
towards MOD/MYD29. To analyze this, we conduct a more
detailed analysis of the OSCD and MOD/MYD29 daily me-
dian TIT (Figs. 7 and 8).

Unfortunately, no S1-A/B swath was acquired over the
BIS area for 17 May 2017. However, S1-A/B swaths were
acquired the day before and after (Table 2).

From the S1-A/B data (Fig. 7a and b), the existence of
open water and/or thin ice very close to the ice-shelf edge
around 27.4◦W and 76◦ S for 18 May 2017 is evident.

The lack of any clearly distinguishable positive
temperature-anomaly features in the MODIS daily me-
dian IST composite (Fig. 7c) and the general texture of

rather smooth temperature patches are both signs for a
persistently present cloud cover during 17 May 2017.

However, the relatively high temperatures of some of these
potential clouds lead to an erroneous calculation of TIT and
the subsequent daily median TIT composite with an erro-
neously much larger polynya area (PA) for MOD/MYD29
compared to OSCD (Fig. 7d and e). Nonetheless, also OSCD
features TIT estimates from cloud artifacts in the northwest
around 29.5◦W and 74–74.5◦ S as well as in the area of the
primary BIS polynya.

The individual swaths used for the computation of both
composites underline the absence of any pronounced positive
temperature anomalies corresponding to open-water and/or
thin-ice features (Fig. 8a–g).

While cold clouds are reliably identified, the inability of
the MODIS cloud mask to also reliably identify warm cloud
patterns results in the computation of TIT in large patches
west of BIS (Fig. 8q–u). Conversely, these false computa-
tions are not present or are at least much reduced in the
OSCD data (Fig. 8j–n). However, while a small area west of
the tip of the BIS around 28◦W and 75.5◦ S corresponds well
to the polynya signal in the S1-A data (Fig. 7b), the majority
of the TIT estimates appear to be cloud artifacts (Fig. 8n).

From our analysis of the swath-based and daily-composite
comparisons, three major take home messages can be sum-
marized:
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Figure 7. Compilation of S1-A swaths acquired on 16 and 18 May 2017 (a, b, respectively; calibrated backscatter in dB), the daily median
ice-surface temperature (IST; in K) composite for 17 May 2017 from all available MODIS swaths (c), and the resulting daily median thin-ice
thickness (TIT; in m) composites for the OSCD (d) and MOD/MYD29 (e) products for 17 May 2017, respectively. Red dashed line outlines
the polynya on 18 May 2017 in S1-A. Please note that the date format in this figure is year month day (yyyy-mm-dd).

Figure 8. Compilation of MODIS swaths used for the computation of the data shown in Fig. 7: swath-based ice-surface temperature (IST in
K; a–g), resulting swath-wise thin-ice thickness (TIT in m) using OSCD (h–n) and MOD/MYD29 (o–u) data, respectively. Please note that
the date format in this figure is year month day (yyyy-mm-dd).
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Figure 9. Comparison of per-pixel thin-ice occurrence based on all
available swaths from 1 April to 30 September 2017 between the use
of MOD/MYD29 (a) and OSCD data (b), respectively. White and
green dashed lines mark the core BIS region as well as the primary
BIS polynya area, respectively, used for further analyses.

1. Erroneous TIT estimates due to (especially) warm
cloud-cover artifacts resulting from false-negative clas-
sifications in the MOD/MYD29 data increase the over-
all estimated PA substantially. These false-negative
classifications are reduced in the OSCD data.

2. False-positive cloud classifications over positive ice-
surface temperature anomalies in the MOD/MYD29
data reduce the products’ capability to estimate PA
spatially and temporally correctly. These false-positive
classifications are also reduced in the OSCD data.

3. Eliminating the thinnest sea-ice fraction of the thin-
ice spectrum due to false-positive classifications poten-
tially leads to a “thick” thin-ice bias during the daily-
composite procedure.

The combined effect leads to spatially misplaced TIT esti-
mates, likely not resolving the correct shape and (sub)daily
thickness distribution of the open-water and/or thin-ice areas.
Studies such as Paul et al. (2015) and Preußer et al. (2019),
therefore, try to mitigate the effect of points 1 and 2 by intro-
ducing predefined masks.

3.3 Coverage comparison

In order to pick up on the last point, we would like to ana-
lyze the per-swath coverage in more detail, as this also influ-
ences the subdaily TIT distribution and, therefore, the thick-
ness distribution of the resulting daily composite. It appears
that the per-swath thin-ice occurrence frequency is much
higher in the OSCD data compared to the MOD/MYD29 data
(Fig. 9).

Figure 10. Comparison of binned thin-ice thickness classes with
a bin size of 2 cm based on all available swaths from 1 April to
30 September 2017 between the use of MOD/MYD29 (red) and
OSCD (blue) data for the primary BIS polynya (green dashed out-
line in Fig. 9).

Quantifying the differences in the outlined subregions
(Fig. 9; white and green dashed outlines), results in a 10 %
and 20 % (BIS area and primary BIS polynya) higher detec-
tion rate of thin-ice pixels over all MODIS swaths between
1 April and 30 September 2017 in the OSCD data (Fig. 9b).
This improved coverage likely leads to a higher-quality daily
composite, as the impact from outliers is reduced. It admit-
tedly sounds counterintuitive at first to have improved cover-
age (Fig. 9) with at the same time substantially less average
PA (Fig. 6). This effect can be explained from the difference
between swath and daily-composite data. Here, the increase
in coverage mainly focuses around the primary polynya at
BIS (green outline in Fig. 9). However, the substantial de-
crease in daily PA results from reducing the false-negative
classifications of warm clouds as sea ice, primarily off the
BIS edge to the west. These misclassification-related TIT es-
timates push the resulting average PA for the MOD/MYD29
data.

Based on our analysis in Sect. 3.1 and 3.2, we assumed
that these additional thin-ice occurrences likely feature very
thin ice, therefore, reducing the potential bias for thick thin
sea ice in the MOD/MYD29 data. This is evident from
Fig. 10. Here, the TIT occurrence frequency based on 2 cm
bins for all available swaths between 1 April and 30 Septem-
ber 2017 is shown for the MOD/MYD29 and OSCD data.
Thickness classes between 0 and 20 cm are much more fre-
quent in the OSCD data (402 724; Fig. 10) compared to
the MOD/MYD29 standard product (211 021; Fig. 10). The
largest difference between both products, however, is the
overall higher occurrence frequency of the thinnest ice frac-
tions (between 0 and 10 cm) in the OSCD data compared to
MOD/MYD29. As assumed before, there is a bias for thick
thin ice present in the MOD/MYD29 data, which potentially
plays an important role especially in the estimation of sea-ice
production based on daily composites.
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Despite great care during the manual categorization, un-
certainty remains due to the lack of measured ground-truth
data for the training data generation. However, the underly-
ing statistical basis from the unsupervised FCM clustering
in combination with a second stage of fully classifying all
co-located MODIS swaths using NNs before generating the
calibration or validation swath-split final training data for the
OSCD algorithm appears to provide a realistic representation
of the present sea-ice conditions in the BIS area.

4 Summary and outlook

In this study, we present a novel approach to improve the de-
tection of wintertime cloud cover over Antarctic sea ice and
its discrimination from sea-ice cover and open-water and/or
thin-ice areas in MODIS thermal-infrared data using a deep
neural network.

We established a labeled training data set using the
techniques of dimension reduction, unsupervised clustering,
and supervised learning in combination with manual visual
screening and categorization. Through this effort, we gener-
ated a total of 13.1×106 data points for 33 different predic-
tors.

With this data set, we trained a deep neural network and
used it to discriminate between open-water and/or thin-ice,
sea-ice, and cloud-covered areas in the Brunt Ice Shelf re-
gion for the freezing period of 2017 (1 April to 30 Septem-
ber). Here, we computed the thin-ice thickness up to 0.2 m of
open-water and/or thin-ice areas and evaluated the difference
in daily polynya area and daily swath coverage to results us-
ing the standard NSIDC MOD/MYD29 sea-ice product.

Based on our approach, we obtain a 44 % lower average
polynya area but 20 % higher swath coverage rate compared
to the standard MOD/MYD29 product. On the one hand, the
polynya area in MOD/MYD29 is likely dominated through
frequent false-negative classifications of warm clouds as thin
ice, leading to unrealistically large open-water and/or thin-
ice areas, especially during freeze-up. On the other hand, the
much lower coverage rate likely decreases the quality and ac-
curacy of TIT estimates in the daily median TIT composites
when using MOD/MYD29 data. Both factors are reduced in
our OSCD data. This also reduces the impact of single out-
liers on the daily median TIT composites and, therefore, also
increases the quality of derived information such as sea-ice
production.

In the future, we plan to create an open-access comprehen-
sive OSCD-based IST and TIT products covering all major
Antarctic coastal polynyas, as well as providing higher-level
parameters such as polynya area, sea-ice production, and as-
sociated ocean salt flux. We expect this data set to be of great
use to the ocean–sea-ice–ice-shelf model community as well
as for potential biological applications.
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data set can be downloaded through Zenodo at
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