Articles | Volume 14, issue 12
https://doi.org/10.5194/tc-14-4507-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-4507-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica
Felipe Napoleoni
CORRESPONDING AUTHOR
Department of Geography, Durham University, Durham, DH1 3LE, UK
Stewart S. R. Jamieson
Department of Geography, Durham University, Durham, DH1 3LE, UK
Neil Ross
School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
Michael J. Bentley
Department of Geography, Durham University, Durham, DH1 3LE, UK
Andrés Rivera
Departamento de Geografía, Universidad de Chile, Portugal 84, Santiago, Chile
Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
Andrew M. Smith
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Martin J. Siegert
Department of Earth Science and Engineering, Grantham Institute, Imperial College London, South Kensington, London, SW7 2AZ, UK
Guy J. G. Paxman
Department of Geography, Durham University, Durham, DH1 3LE, UK
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
Guisella Gacitúa
Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
José A. Uribe
Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile
Rodrigo Zamora
Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile
Alex M. Brisbourne
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
David G. Vaughan
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Related authors
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Ole Zeising, Álvaro Arenas-Pingarrón, Alex M. Brisbourne, and Carlos Martín
The Cryosphere, 19, 2355–2363, https://doi.org/10.5194/tc-19-2355-2025, https://doi.org/10.5194/tc-19-2355-2025, 2025
Short summary
Short summary
Ice crystal orientation influences how glacier ice deforms. Radar polarimetry is commonly used to study the bulk ice crystal orientation, but the often used coherence method only provides information of the shallow ice in fast-flowing areas. This study shows that reducing the bandwidth of high-bandwidth radar data significantly enhances the depth limit of the coherence method. This improvement helps us to better understand ice dynamics in fast-flowing ice streams.
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068, https://doi.org/10.5194/egusphere-2025-1068, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) imaging is essential for deep englacial observations. Each pixel is formed by averaging the radar echoes within an antenna beamwidth, but the echo diversity is lost after the average. We improve the SAR interpretation if three sub-images are formed with different sub-beamwidths: each is coloured in red, green, or blue, and they are overlapped, creating a coloured image. Interpreters will better identify the slopes of internal layers, crevasses, and layer roughness.
Carmen González, José Manuel Vilaplana, Alberto Redondas, Javier López-Solano, José María San Atanasio, Richard Kift, Andrew R. D. Smedley, Pavel Babal, Ana Díaz, Nis Jepsen, Guisella Gacitúa, and Antonio Serrano
EGUsphere, https://doi.org/10.5194/egusphere-2025-490, https://doi.org/10.5194/egusphere-2025-490, 2025
Short summary
Short summary
Brewer spectroradiometers are widely used instruments that have been monitoring global solar ultraviolet (UV) irradiance since the 1990s, playing a key role in solar UV research. The uncertainties of these measurements are rarely evaluated even though they are essential to determine the quality of these measurements. In this work, the uncertainty of ten Brewers is estimated using the Monte Carlo method, showing that Brewer’s relative uncertainty is less than 5 % for wavelengths above 300 nm.
Kevin Hank, Robert J. Arthern, C. Rosie Williams, Alex M. Brisbourne, Andrew M. Smith, James A. Smith, Anna Wåhlin, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2025-764, https://doi.org/10.5194/egusphere-2025-764, 2025
Short summary
Short summary
The slipperiness beneath ice sheets is a key source of uncertainty in sea level rise projections. Using both observations and model output, we infer the most probable representation of basal slipperiness in ice sheet models, enabling more accurate projections. For Pine Island Glacier, our results provide support for a Coulomb-type sliding law and widespread low effective pressures, potentially increasing sliding velocities in prognostic simulations and, hence, sea level rise projections.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025, https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Short summary
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output and other data to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Mark A. Stevenson, Dominic A. Hodgson, Michael J. Bentley, Darren R. Gröcke, Neil Tunstall, Chris Longley, Alice Graham, and Erin L. McClymont
EGUsphere, https://doi.org/10.5194/egusphere-2025-513, https://doi.org/10.5194/egusphere-2025-513, 2025
Short summary
Short summary
We present a record of sea ice and climate inferred from novel snow petrel stomach oil deposits from East Antarctica. Snow petrels feed in the sea ice on a mixture of marine organisms and regurgitate these oils close to their nesting sites in nunatak mountains. We use makers of past diet and productivity from within a deposit to show how sea ice and climate has varied over part of the Holocene. Three periods are identified ranging from low to intermediate and increased sea ice cover.
Holly Wytiahlowsky, Chris R. Stokes, Rebecca A. Hodge, Caroline C. Clason, and Stewart S. R. Jamieson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3894, https://doi.org/10.5194/egusphere-2024-3894, 2025
Short summary
Short summary
Channels on glaciers are important due to their role in transporting glacial meltwater from glaciers and into downstream river catchments. These channels have received little research in mountain environments. We manually mapped <2000 channels to determine their distribution and characteristics across 285 glaciers in Switzerland. We find that channels are mostly commonly found on large glaciers with lower relief and fewer crevasses. Most channels run off the glacier, but 20 % enter the glacier.
Esteban Lannutti, Pablo Marmolejo, José Sanchez, Ignacio Ortíz, María G. Lenzano, Silvana Moragues, Andrés Rivera, Paulina Vacaflor, Gustavo Pereyra, and Hugo Morales
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W6-2024, 13–18, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-13-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-13-2024, 2024
Camilo Rada, Andrés Rivera, and Sebastián Alfaro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W6-2024, 37–43, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-37-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-37-2024, 2024
Guisella Gacitúa, Jacob Lorentsen Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Geosci. Instrum. Method. Data Syst., 13, 373–391, https://doi.org/10.5194/gi-13-373-2024, https://doi.org/10.5194/gi-13-373-2024, 2024
Short summary
Short summary
In spring 2021, a study compared sea surface temperature (SST) measurements from thermal infrared (IR) and passive microwave (PMW) radiometers on a ferry between Denmark and Iceland. The goal was to reduce atmospheric effects and directly compare IR and PMW measurements. A method was developed to convert PMW data to match IR data, with uncertainties analysed in the process. The findings provide insights to improve SST inter-comparisons and enhance the synergy between IR and PMW observations.
Elizabeth R. Thomas, Dieter Tetzner, Bradley Markle, Joel Pedro, Guisella Gacitúa, Dorothea Elisabeth Moser, and Sarah Jackson
Clim. Past, 20, 2525–2538, https://doi.org/10.5194/cp-20-2525-2024, https://doi.org/10.5194/cp-20-2525-2024, 2024
Short summary
Short summary
The chemical records contained in a 12 m firn (ice) core from Peter I Island, a remote sub-Antarctic island situated in the Pacific sector of the Southern Ocean (the Bellingshausen Sea), capture changes in snowfall and temperature (2002–2017 CE). This data-sparse region has experienced dramatic climate change in recent decades, including sea ice decline and ice loss from adjacent West Antarctic glaciers.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Edmund J. Lea, Stewart S. R. Jamieson, and Michael J. Bentley
The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024, https://doi.org/10.5194/tc-18-1733-2024, 2024
Short summary
Short summary
We use the ice surface expression of the Gamburtsev Subglacial Mountains in East Antarctica to map the horizontal pattern of valleys and ridges in finer detail than possible from previous methods. In upland areas, valleys are spaced much less than 5 km apart, with consequences for the distribution of melting at the bed and hence the likelihood of ancient ice being preserved. Automated mapping techniques were tested alongside manual approaches, with a hybrid approach recommended for future work.
Guy J. G. Paxman, Stewart S. R. Jamieson, Aisling M. Dolan, and Michael J. Bentley
The Cryosphere, 18, 1467–1493, https://doi.org/10.5194/tc-18-1467-2024, https://doi.org/10.5194/tc-18-1467-2024, 2024
Short summary
Short summary
This study uses airborne radar data and satellite imagery to map mountainous topography hidden beneath the Greenland Ice Sheet. We find that the landscape records the former extent and configuration of ice masses that were restricted to areas of high topography. Computer models of ice flow indicate that valley glaciers eroded this landscape millions of years ago when local air temperatures were at least 4 °C higher than today and Greenland’s ice volume was < 10 % of that of the modern ice sheet.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Thomas Samuel Hudson, Alex M. Brisbourne, Sofia-Katerina Kufner, J.-Michael Kendall, and Andy M. Smith
The Cryosphere, 17, 4979–4993, https://doi.org/10.5194/tc-17-4979-2023, https://doi.org/10.5194/tc-17-4979-2023, 2023
Short summary
Short summary
Earthquakes (or icequakes) at glaciers can shed light on fundamental glacier processes. These include glacier slip, crevassing, and imaging ice structure. To date, most studies use networks of seismometers, primarily sensitive to icequakes within the spatial extent of the network. However, arrays of seismometers allow us to detect icequakes at far greater distances. Here, we investigate the potential of such array-processing methods for studying icequakes at glaciers.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Hannah J. Picton, Chris R. Stokes, Stewart S. R. Jamieson, Dana Floricioiu, and Lukas Krieger
The Cryosphere, 17, 3593–3616, https://doi.org/10.5194/tc-17-3593-2023, https://doi.org/10.5194/tc-17-3593-2023, 2023
Short summary
Short summary
This study provides an overview of recent ice dynamics within Vincennes Bay, Wilkes Land, East Antarctica. This region was recently discovered to be vulnerable to intrusions of warm water capable of driving basal melt. Our results show extensive grounding-line retreat at Vanderford Glacier, estimated at 18.6 km between 1996 and 2020. This supports the notion that the warm water is able to access deep cavities below the Vanderford Ice Shelf, potentially making Vanderford Glacier unstable.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-8, https://doi.org/10.5194/gmd-2023-8, 2023
Revised manuscript not accepted
Short summary
Short summary
Ice sheet models can help predict how Antarctica’s ice sheets respond to environmental change; such models benefit from comparison to geological data. Here, we use ice sheet model results, plus other data, to predict the erosion of Antarctic debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
James A. Smith, Louise Callard, Michael J. Bentley, Stewart S. R. Jamieson, Maria Luisa Sánchez-Montes, Timothy P. Lane, Jeremy M. Lloyd, Erin L. McClymont, Christopher M. Darvill, Brice R. Rea, Colm O'Cofaigh, Pauline Gulliver, Werner Ehrmann, Richard S. Jones, and David H. Roberts
The Cryosphere, 17, 1247–1270, https://doi.org/10.5194/tc-17-1247-2023, https://doi.org/10.5194/tc-17-1247-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet is melting at an accelerating rate. To understand the significance of these changes we reconstruct the history of one of its fringing ice shelves, known as 79° N ice shelf. We show that the ice shelf disappeared 8500 years ago, following a period of enhanced warming. An important implication of our study is that 79° N ice shelf is susceptible to collapse when atmospheric and ocean temperatures are ~2°C warmer than present, which could occur by the middle of this century.
Michał Pętlicki, Andrés Rivera, Jonathan Oberreuter, José Uribe, Johannes Reinthaler, and Francisca Bown
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-10, https://doi.org/10.5194/tc-2023-10, 2023
Manuscript not accepted for further review
Short summary
Short summary
The terminus of San Quintín glacier, the largest of the Northern Patagonia Icefield in southern Chile, is rapidly disintegrating with large tabular icebergs into a proglacial lake left behind by this retreating glacier. We show that the ongoing retreat is caused by recent detachment of a floating terminus from the glacier bed. This process may lead to the disappearance of the last existing piedmont lobe in Patagonia, and one of the few remaining glaciers of this type in the world.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Jonathan Oberreuter, Edwin Badillo-Rivera, Edwin Loarte, Katy Medina, Alejo Cochachin, and José Uribe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-336, https://doi.org/10.5194/essd-2021-336, 2022
Manuscript not accepted for further review
Short summary
Short summary
We present a representative set of data of interpreted ice thickness and ice surface elevation of the ablation area of the Artesonraju glacier between 2012 and 2020. The results show a maximum depth of 235 ± 18 m and a decreasing mean depth ranging from 134 ± 18 m in 2013 to 110 ± 18 m in 2020. Additionally, we estimate a mean ice thickness change rate of −4.2 ± 3.2 m yr−1 between 2014 and 2020, which is in agreement with the elevation change in the same period of −3.2 ± 0.2 m yr−1.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Short summary
Here we present the first-ever radar and ice core data from the sub-Antarctic islands of Bouvet Island, Peter I Island, and Young Island. These islands have the potential to record past climate in one of the most data-sparse regions on earth. Despite their northerly location, surface melting is generally low, and the upper layer of the ice at most sites is undisturbed. We estimate that a 100 m ice core drilled on these islands could capture climate over the past 100–200 years.
Bertie W. J. Miles, Jim R. Jordan, Chris R. Stokes, Stewart S. R. Jamieson, G. Hilmar Gudmundsson, and Adrian Jenkins
The Cryosphere, 15, 663–676, https://doi.org/10.5194/tc-15-663-2021, https://doi.org/10.5194/tc-15-663-2021, 2021
Short summary
Short summary
We provide a historical overview of changes in Denman Glacier's flow speed, structure and calving events since the 1960s. Based on these observations, we perform a series of numerical modelling experiments to determine the likely cause of Denman's acceleration since the 1970s. We show that grounding line retreat, ice shelf thinning and the detachment of Denman's ice tongue from a pinning point are the most likely causes of the observed acceleration.
Guisella Gacitúa, Christoph Schneider, Jorge Arigony, Inti González, Ricardo Jaña, and Gino Casassa
Earth Syst. Sci. Data, 13, 231–236, https://doi.org/10.5194/essd-13-231-2021, https://doi.org/10.5194/essd-13-231-2021, 2021
Short summary
Short summary
We performed the first successful ice thickness measurements using terrestrial ground-penetrating radar in the ablation area of Schiaparelli Glacier (Cordillera Darwin, Tierra del Fuego, Chile). Data are fundamental to understand glaciers dynamics, constrain ice dynamical modelling, and predict glacier evolution. Results show a valley-shaped bedrock below current sea level; thus further retreat of Schiaparelli Glacier will probably lead to an enlarged and strongly over-deepened proglacial lake.
William D. Smith, Stuart A. Dunning, Stephen Brough, Neil Ross, and Jon Telling
Earth Surf. Dynam., 8, 1053–1065, https://doi.org/10.5194/esurf-8-1053-2020, https://doi.org/10.5194/esurf-8-1053-2020, 2020
Short summary
Short summary
Glacial landslides are difficult to detect and likely underestimated due to rapid covering or dispersal. Without improved detection rates we cannot constrain their impact on glacial dynamics or their potential climatically driven increases in occurrence. Here we present a new open-access tool (GERALDINE) that helps a user detect 92 % of these events over the past 38 years on a global scale. We demonstrate its ability by identifying two new, large glacial landslides in the Hayes Range, Alaska.
Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson
The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, https://doi.org/10.5194/tc-14-4103-2020, 2020
Short summary
Short summary
Surface meltwater lakes can flex and fracture ice shelves, potentially leading to ice shelf break-up. A long-term record of lake evolution on Shackleton Ice Shelf is produced using optical satellite imagery and compared to surface air temperature and modelled surface melt. The results reveal that lake clustering on the ice shelf is linked to melt-enhancing feedbacks. Peaks in total lake area and volume closely correspond with intense snowmelt events rather than with warmer seasonal temperatures.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Cited articles
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y.,
Maggi, A., and Lévêque, J.-J.: Temperature, lithosphere-asthenosphere
boundary, and heat flux beneath the Antarctic Plate inferred from seismic
velocities, J. Geophys. Res.-Sol. Ea., 120, 8720–8742,
https://doi.org/10.1002/2015JB011917, 2015. a
Anandakrishnan, S. and Alley, R. B.: Stagnation of ice stream C, West
Antarctica by water piracy, Geophys. Res. Lett., 24, 265–268, 1997. a
Ashmore, D. W. and Bingham, R. G.: Antarctic subglacial hydrology: current
knowledge and future challenges, Antarc. Sci., 26, 758–773,
https://doi.org/10.1017/S0954102014000546, 2014. a
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I.,
Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M., and Wolovick,
M.: Widespread Persistent Thickening of the East Antarctic Ice Sheet by
Freezing from the Base, Science, 331, 1592–1595,
https://doi.org/10.1126/science.1200109,
2011. a
Bentley, C. R., Lord, N., and Liu, C.: Radar reflections reveal a wet bed
beneath stagnant Ice Stream C and a frozen bed beneath ridge BC, West
Antarctica, J. Glaciol., 44, 149–156,
https://doi.org/10.3189/S0022143000002434, 1998. a
Burton-Johnson, A., Halpin, J. A., Whittaker, J. M., Graham, F. S., and Watson,
S. J.: A new heat flux model for the Antarctic Peninsula incorporating
spatially variable upper crustal radiogenic heat production, Geophys. Res. Lett., 44, 5436–5446, https://doi.org/10.1002/2017GL073596, 2017. a
Carter, S. P., Fricker, H. A., and Siegfried, M. R.: Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains, The Cryosphere, 11, 381–405, https://doi.org/10.5194/tc-11-381-2017, 2017. a
Corr, H., Moore, J. C., and Nicholls, K. W.: Radar absorption due to impurities
in Antarctic ice, Geophys. Res. Lett., 20, 1071–1074, 1993. a
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press,
2010. a
Diez, A., Matsuoka, K., Ferraccioli, F., Jordan, T. A., Corr, H. F., Kohler,
J., Olesen, A. V., and Forsberg, R.: Basal Settings Control Fast Ice Flow in
the Recovery/Slessor/Bailey Region, East Antarctica, Geophys. Res. Lett., 45, 2706–2715, https://doi.org/10.1002/2017GL076601, 2018. a
Dowdeswell, J. A. and Siegert, M. J.: The physiography of modern Antarctic
subglacial lakes, Global Planet. Change, 35, 221–236,
https://doi.org/10.1016/S0921-8181(02)00128-5, 2003. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a, b
Fricker, H. A., Scambos, T., Bindschadler, R., and Padman, L.: An Active
Subglacial Water System in West Antarctica Mapped from Space, Science, 315,
1544–1548, https://doi.org/10.1126/science.1136897, 2007. a
Fricker, H. A., Carter, S. P., Bell, R. E., and Scambos, T.: Active lakes of
Recovery Ice Stream, East Antarctica: a bedrock-controlled subglacial
hydrological system, J. Glaciol., 60, 1015–1030,
https://doi.org/10.3189/2014JoG14J063, 2014. a, b, c
Gacitúa, G., Uribe, J. A., Wilson, R., Loriaux, T., Hernández, J., and
Rivera, A.: 50 MHz helicopter-borne radar data for determination of glacier
thermal regime in the central Chilean Andes, Ann. Glaciol., 56,
193–201, https://doi.org/10.3189/2015AoG70A953, 2015. a, b
Gades, A. M., Raymond, C. F., Conway, H., and Jagobel, R. W.: Bed properties of
Siple Dome and adjacent ice streams, West Antarctica, inferred from
radio-echo sounding measurements, J. Glaciol., 46, 88–94,
https://doi.org/10.3189/172756500781833467, 2000. a, b
Glen, J. W. and Paren, J. G.: The Electrical Properties of Snow and Ice,
J. Glaciol., 15, 15–38, https://doi.org/10.3189/S0022143000034249, 1975. a
Gorman, M. R. and Siegert, M. J.: Penetration of Antarctic subglacial lakes by
VHF electromagnetic pulses: Information on the depth and electrical
conductivity of basal water bodies, J. Geophys. Res.-Sol. Ea., 104, 29311–29320, https://doi.org/10.1029/1999JB900271, 1999. a, b
Gudlaugsson, E., Humbert, A., Andreassen, K., Clason, C. C., Kleiner, T., and
Beyer, S.: Eurasian ice-sheet dynamics and sensitivity to subglacial
hydrology, J. Glaciol., 63, 556–564, 2017. a
Heliere, F., Lin, C., Corr, H., and Vaughan, D.: Radio Echo Sounding of
Pine Island Glacier, West Antarctica: Aperture Synthesis Processing and
Analysis of Feasibility From Space, IEEE T. Geosci. Remote, 45, 2573–2582, https://doi.org/10.1109/TGRS.2007.897433, 2007. a
Jamieson, S. S., Stokes, C. R., Ross, N., Rippin, D. M., Bingham, R. G.,
Wilson, D. S., Margold, M., and Bentley, M. J.: The glacial geomorphology of
the Antarctic ice sheet bed, Antarc. Sci., 26, 724–741,
https://doi.org/10.1017/S0954102014000212, 2014. a, b
Jordan, T. A., Ferraccioli, F., Ross, N., Corr, H. F., Leat, P. T., Bingham,
R. G., Rippin, D. M., le Brocq, A., and Siegert, M. J.: Inland extent of the
Weddell Sea Rift imaged by new aerogeophysical data, Tectonophysics, 585,
137–160, 2013. a
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055,
2014. a
Kapitsa, A. P., Ridley, J. K., de Q. Robin, G., Siegert, M. J., and Zotikov,
I. A.: A large deep freshwater lake beneath the ice of central East
Antarctica, Nature, 381, 684–686, https://doi.org/10.1038/381684a0, 1996. a
Kirkham, J. D., Hogan, K. A., Larter, R. D., Arnold, N. S., Nitsche, F. O., Golledge, N. R., and Dowdeswell, J. A.: Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica, The Cryosphere, 13, 1959–1981, https://doi.org/10.5194/tc-13-1959-2019, 2019. a, b, c
Leat, P. T., Jordan, T. A., Flowerdew, M. J., Riley, T. R., Ferraccioli, F.,
and Whitehouse, M. J.: Jurassic high heat production granites associated with
the Weddell Sea rift system, Antarctica, Tectonophysics, 722, 249–264, 2018. a
Livingstone, S. J., Clark, C. D., Woodward, J., and Kingslake, J.: Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets, The Cryosphere, 7, 1721–1740, https://doi.org/10.5194/tc-7-1721-2013, 2013. a, b, c
Lythe, M. B. and Vaughan, D. G.: BEDMAP: A new ice thickness and subglacial
topographic model of Antarctica, J. Geophys. Res.-Sol. Ea., 106, 11335–11351, 2001. a
MacGregor, J. A., Winebrenner, D. P., Conway, H., Matsuoka, K., Mayewski,
P. A., and Clow, G. D.: Modeling englacial radar attenuation at Siple Dome,
West Antarctica, using ice chemistry and temperature data, J. Geophys. Res. Earth, 112, 1–14, https://doi.org/10.1029/2006JF000717, 2007. a
Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D., Eagles,
G., and Vaughan, D. G.: Heat Flux Distribution of Antarctica Unveiled,
Geophys. Res. Lett., 44, 11417–11426, https://doi.org/10.1002/2017GL075609,
2017. a
Matsuoka, K., MacGregor, J. A., and Pattyn, F.: Predicting radar attenuation
within the Antarctic ice sheet, Earth Planet. Sci. Lett., 359,
173–183, 2012. a
Maule, C. F., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat flux
anomalies in Antarctica revealed by satellite magnetic data, Science, 309,
464–467, 2005. a
Mouginot, J., Scheuchl, B., and Rignot, E.: MEaSUREs Antarctic boundaries for
IPY 2007–2009 from satellite radar, version 2, Boulder, CO: NASA National
Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/AXE4121732AD, 2017. a
Mouginot, J., Rignot, E., and Scheuchl, B.: Continent-Wide, Interferometric SAR
Phase, Mapping of Antarctic Ice Velocity, Geophys. Res. Lett., 0, 9710–9718,
https://doi.org/10.1029/2019GL083826, 2019. a, b, c, d
Napoleoni, F., Jamieson, S. S. R., Ross, N., Bentley, M., Rivera, A., Smith, A., Siegert, M., Paxman, G., Gacitúa, G., Uribe, J., Zamora, R., Brisbourne, A., and Vaughan, D.: Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica, 1977–2017 (Version 1.0), UK Polar Data Centre, Natural Environment Research Council, available at: https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01401, last access: 16 November 2020. a
Oswald, G. and Robin, G.: Lakes Beneath the Antarctic Ice Sheet, Nature, 245,
251–254, https://doi.org/10.1038/245251a0, 1973. a, b
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice
sheet/ice stream model, Earth Planet. Sci. Lett., 295, 451–461,
https://doi.org/10.1016/j.epsl.2010.04.025, 2010. a, b, c, d
Pattyn, F., Carter, S. P., and Thoma, M.: Advances in modelling subglacial
lakes and their interaction with the Antarctic ice sheet, Philos. T. Roy. Soc. A, 374, 20140296, https://doi.org/10.1098/rsta.2014.0296, 2016. a, b
Paxman, G., Jamieson, S., Ferraccioli, F., Bentley, M., Forsberg, R., Ross, N.,
Watts, A., F.J. Corr, H., and Jordan, T.: Uplift and tilting of the
Shackleton Range in East Antarctica driven by glacial erosion and normal
faulting: Flexural Uplift of the Shackleton Range, J. Geophys. Res.-Sol. Ea., 122, 2390–2408, https://doi.org/10.1002/2016JB013841, 2017. a
Paxman, G. J., Jamieson, S. S., Hochmuth, K., Gohl, K., Bentley, M. J.,
Leitchenkov, G., and Ferraccioli, F.: Reconstructions of Antarctic topography
since the Eocene–Oligocene boundary,
Palaeogeography, Palaeoclimatology,
Palaeoecology,
535, 109346,
https://doi.org/10.1016/j.palaeo.2019.109346, 2019. a
Peters, M. E., Blankenship, D. D., and Morse, D. L.: Analysis techniques for
coherent airborne radar sounding: Application to West Antarctic ice streams,
J. Geophys. Res.-Sol. Ea., 110, 1–17,
https://doi.org/10.1029/2004JB003222, 2005. a, b, c, d
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and
Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014. a
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J.,
and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116,
1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a
Robin, G. de Q., Swithinbank, C., Smith, B. M. E.: Radio echo exploration of the Antarctic ice sheet, in: International Symposium on Antarctic Glaciological Exploration (ISAGE), edited by: Gow, A. J., Keeler, C., Langway, C. C., Weeks, W. F., Hanover, New Hampshire, 3–7 September 1968, Gentbrugge, International Association of Scientific Hydrology, (IASH Publication, 86), 97–115, 1970. a, b
Ross, N. and Siegert, M.: Basal melting over Subglacial Lake Ellsworth and its
catchment: insights from englacial layering, Ann. Glaciol., 1–8,
https://doi.org/10.1017/aog.2020.50, 2020. a, b
Ross, N., Siegert, M., Woodward, J., Smith, A., Corr, H., Bentley, M.,
Hindmarsh, R., King, E., and Rivera, A.: Holocene stability of the
Amundsen-Weddell ice divide, West Antarctica, Geology, 39, 935–938,
https://doi.org/10.1130/G31920.1, 2011. a
Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water
system transition beneath Thwaites Glacier, West Antarctica, P. Natl. Acad. Sci. USA, 110, 12225–12228, 2013. a
Schroeder, D. M., Seroussi, H., Chu, W., and Young, D. A.: Adaptively
constraining radar attenuation and temperature across the Thwaites Glacier
catchment using bed echoes, J. Glaciol., 62, 1075–1082, 2016. a
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014. a, b
Shapiro, N. M. and Ritzwoller, M. H.: Inferring surface heat flux distributions
guided by a global seismic model: particular application to Antarctica, Earth Planet. Sci. Lett., 223, 213–224, 2004. a
Shreve, R. L.: Movement of Water in Glaciers, J. Glaciol., 11,
205–214, https://doi.org/10.3189/S002214300002219X, 1972. a, b, c, d
Siegert, M., Dowdeswell, J., Gorman, M., and McIntyre, N.: An inventory of
Antarctic sub-glacial lakes, Antarc. Sci., 8, 281–286,
https://doi.org/10.1017/S0954102096000405, 1996. a
Siegert, M. J.: Radar evidence of water-saturated sediments beneath the East
Antarctic Ice Sheet, Geological Society, London, Special Publications, 176,
217–229, https://doi.org/10.1144/GSL.SP.2000.176.01.17,
2000. a, b, c
Siegert, M. J.: Lakes Beneath the Ice Sheet: The Occurrence, Analysis, and
Future Exploration of Lake Vostok and Other Antarctic Subglacial Lakes,
Annu. Rev. Earth Pl. Sc., 33, 215–245,
https://doi.org/10.1146/annurev.earth.33.092203.122725, 2005. a, b, c
Siegert, M. J. and Bamber, J. L.: Subglacial water at the heads of Antarctic
ice-stream tributaries, J. Glaciol., 46, 702–703, 2000. a
Siegert, M. J., Hindmarsh, R., Corr, H., Smith, A., Woodward, J., King, E. C.,
Payne, A. J., and Joughin, I.: Subglacial Lake Ellsworth: A candidate for in
situ exploration in West Antarctica, Geophys. Res. Lett., 31, 1–4,
https://doi.org/10.1029/2004GL021477, 2004a. a
Siegert, M. J., Welch, B., Morse, D., Vieli, A., Blankenship, D. D., Joughin,
I., King, E. C., Vieli, G. J.-M. C. L., Payne, A. J., and Jacobel, R.: Ice
Flow Direction Change in Interior West Antarctica, Science, 305, 1948–1951,
https://doi.org/10.1126/science.1101072, 2004b. a
Siegert, M. J., Clarke, R. J., Mowlem, M., Ross, N., Hill, C. S., Tait, A.,
Hodgson, D., Parnell, J., Tranter, M., Pearce, D., Bentley, M. J., Cockell,
C., Tsaloglou, M.-N., Smith, A., Woodward, J., Brito, M. P., and Waugh, E.:
Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A
method for exploring deep Antarctic subglacial lake environments, Rev. Geophys., 50, 1–40, https://doi.org/10.1029/2011RG000361, 2012. a, b, c
Siegert, M. J., Kingslake, J., Ross, N., Whitehouse, P. L., Woodward, J.,
Jamieson, S. S. R., Bentley, M. J., Winter, K., Wearing, M., Hein, A. S.,
Jeofry, H., and Sugden, D. E.: Major Ice Sheet Change in the Weddell Sea
Sector of West Antarctica Over the Last 5000 Years, Rev. Geophys., 57, 1197–1223, https://doi.org/10.1029/2019RG000651, 2019. a
Slater, T., Shepherd, A., McMillan, M., Muir, A., Gilbert, L., Hogg, A. E., Konrad, H., and Parrinello, T.: A new digital elevation model of Antarctica derived from CryoSat-2 altimetry, The Cryosphere, 12, 1551–1562, https://doi.org/10.5194/tc-12-1551-2018, 2018. a, b, c
Smith, A. M., Woodward, J., Ross, N., Bentley, M. J., Hodgson, D. A., Siegert,
M. J., and King, E. C.: Evidence for the long-term sedimentary environment in
an Antarctic subglacial lake, Earth Planet. Sci. Lett., 504, 139–151, https://doi.org/10.1016/j.epsl.2018.10.011, 2018. a
Smith, B. E., Fricker, H. A., Joughin, I. R., and Tulaczyk, S.: An inventory of
active subglacial lakes in Antarctica detected by ICESat (2003–2008),
J. Glaciol., 55, 573–595, https://doi.org/10.3189/002214309789470879, 2009. a
Smith, B. E., Gourmelen, N., Huth, A., and Joughin, I.: Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica, The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, 2017. a, b
Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a
large East Antarctic outlet glacier caused by subglacial floods, Nat. Geosci., 1, 827, https://doi.org/10.1038/ngeo356, 2008. a
Stenoien, M. D. and Bentley, C. R.: Pine Island Glacier, Antarctica: A study of
the catchment using interferometric synthetic aperture radar measurements and
radar altimetry, J. Geophys. Res.-Sol. Ea., 105,
21761–21779, 2000. a
Sugden, D. E., Hein, A. S., Woodward, J., Marrero, S. M., Ángel Rodés,
Dunning, S. A., Stuart, F. M., Freeman, S. P., Winter, K., and Westoby,
M. J.: The million-year evolution of the glacial trimline in the southernmost
Ellsworth Mountains, Antarctica, Earth Planet. Sci. Lett., 469, 42–52, https://doi.org/10.1016/j.epsl.2017.04.006, 2017. a, b
Uribe, J., Zamora, R., Pulgar, S., Oberreuter, J., and Rivera, A.: Overview of
the low-frequency ice penetrating radar system survey conducted to Subglacial
Lake CECs, West Antarctica, available at: https://www.igsoc.org/symposia/2019/stanford/proceedings/procsfiles/procabstracts_75.html#A2948 (last access: 12 November 2020),
2019. a
van der Veen, C. J., Leftwich, T., von Frese, R., Csatho, B. M., and Li, J.:
Subglacial topography and geothermal heat flux: Potential interactions with
drainage of the Greenland ice sheet, Geophys. Res. Lett., 34,
https://doi.org/10.1029/2007GL030046,
2007. a
Vaughan, D. G., Corr, H. F. J., Ferraccioli, F., Frearson, N., O'Hare, A.,
Mach, D., Holt, J. W., Blankenship, D. D., Morse, D. L., and Young, D. A.:
New boundary conditions for the West Antarctic ice sheet: Subglacial
topography beneath Pine Island Glacier, Geophys. Res. Lett., 33, 1–4,
https://doi.org/10.1029/2005GL025588, 2006. a, b, c, d, e, f, g
Vaughan, D. G., Corr, H. F., Smith, A. M., Pritchard, H. D., and Shepherd, A.:
Flow-switching and water piracy between Rutford ice stream and Carlson inlet,
West Antarctica, J. Glaciol., 54, 41–48, 2008. a
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic
Mapping Tools: Improved Version Released, Eos, Transactions American
Geophysical Union, 94, 409–410, https://doi.org/10.1002/2013EO450001,
2013. a
Winebrenner, D. P., Smith, B. E., Catania, G. A., Conway, H. B., and Raymond,
C. F.: Radio-frequency attenuation beneath Siple Dome, West Antarctica, from
wide-angle and profiling radar observations, Ann. Glaciol., 37,
226–232, 2003. a
Wingham, D. J., Siegert, M. J., Shepherd, A., and Muir, A. S.: Rapid discharge
connects Antarctic subglacial lakes, Nature, 440, https://doi.org/10.1038/nature04660,
2006. a, b
Winsborrow, M. C., Clark, C. D., and Stokes, C. R.: What controls the location
of ice streams?, Earth-Sci. Rev., 103, 45–59, 2010. a
Winter, K., Woodward, J., Ross, N., Dunning, S. A., Bingham, R. G., Corr,
H. F., and Siegert, M. J.: Airborne radar evidence for tributary flow
switching in Institute Ice Stream, West Antarctica: Implications for ice
sheet configuration and dynamics, J. Geophys. Res.-Earth, 120, 1611–1625, 2015. a
Woodward, J., Smith, A. M., Ross, N., Thoma, M., Corr, H. F. J., King, E. C.,
King, M. A., Grosfeld, K., Tranter, M., and Siegert, M. J.: Location for
direct access to subglacial Lake Ellsworth: An assessment of geophysical data
and modeling, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL042884,
2010. a
Wright, A. and Siegert, M. J.: The Identification and Physiographical Setting
of Antarctic Subglacial Lakes: An Update Based on Recent Discoveries,
American Geophysical Union (AGU), 9–26, https://doi.org/10.1002/9781118670354.ch2, 2011. a, b
Wright, A. P., Siegert, M. J., Le Brocq, A. M., and Gore, D. B.: High
sensitivity of subglacial hydrological pathways in Antarctica to small
ice-sheet changes, Geophys. Res. Lett., 35, 1–5,
https://doi.org/10.1029/2008GL034937,
2008. a
Zamora, R., Uribe, J., Pulgar, S., Oberreuter, J., and Rivera, A.: Ground
penetrating radar system for measuring deep ice in Antarctica using
software-defined radio approach, available at:
https://www.igsoc.org/symposia/2019/stanford/proceedings/procsfiles/procabstracts_75.html#A2968 (last access: 12 November 2020),
2019. a
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a...