Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3523-2020
https://doi.org/10.5194/tc-14-3523-2020
Research article
 | 
26 Oct 2020
Research article |  | 26 Oct 2020

Observations of sea ice melt from Operation IceBridge imagery

Nicholas C. Wright, Chris M. Polashenski, Scott T. McMichael, and Ross A. Beyer

Related authors

Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery
Nicholas C. Wright and Chris M. Polashenski
The Cryosphere, 12, 1307–1329, https://doi.org/10.5194/tc-12-1307-2018,https://doi.org/10.5194/tc-12-1307-2018, 2018
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024,https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024,https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024,https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024,https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024,https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary

Cited articles

Barber, D. G. and Yackel, J.: The physical, radiative and microwave scattering characteristics of melt ponds on Arctic landfast sea ice, Int. J. Remote Sens., 20, 2069–2090, https://doi.org/10.1080/014311699212353, 1999. 
Bliss, A. C. and Anderson, M. R.: Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012, The Cryosphere, 8, 2089–2100, https://doi.org/10.5194/tc-8-2089-2014, 2014. 
Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea ice-albedo climate feedback mechanism, J. Climate, 8, 240–247, https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2, 1995. 
De, K. and Masilamani, V.: Image Sharpness Measure for Blurred Images in Frequency Domain, Procedia Engineer., 64, 149–158, https://doi.org/10.1016/J.PROENG.2013.09.086, 2013. 
Derksen, C., Piwowar, J., and LeDrew, E.: Sea-Ice Melt-Pond Fraction as Determined from Low Level Aerial Photographs, Arct. Alp. Res., 29, 345–351, https://doi.org/10.1080/00040851.1997.12003254, 1997. 
Download
Short summary
This work presents a new dataset of sea ice surface fractions along NASA Operation IceBridge flight tracks created by processing hundreds of thousands of aerial images. These results are then analyzed to investigate the behavior of meltwater on first-year ice in comparison to multiyear ice. We find preliminary evidence that first-year ice frequently has a lower melt pond fraction than adjacent multiyear ice, contrary to established knowledge in the sea ice community.