Articles | Volume 14, issue 4
The Cryosphere, 14, 1289–1310, 2020
https://doi.org/10.5194/tc-14-1289-2020
The Cryosphere, 14, 1289–1310, 2020
https://doi.org/10.5194/tc-14-1289-2020

Research article 21 Apr 2020

Research article | 21 Apr 2020

Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2

Angela Cheng et al.

Related authors

A new sea ice state dependent parameterization for the free drift of sea ice
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-249,https://doi.org/10.5194/tc-2021-249, 2021
Preprint under review for TC
Short summary
Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies
Damien Ringeisen, L. Bruno Tremblay, and Martin Losch
The Cryosphere, 15, 2873–2888, https://doi.org/10.5194/tc-15-2873-2021,https://doi.org/10.5194/tc-15-2873-2021, 2021
Short summary
Review article: Observations for high-impact weather and their use in verification
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021,https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
The Regional Ice Ocean Prediction System v2: a pan-Canadian ocean analysis system using an online tidal harmonic analysis
Gregory C. Smith, Yimin Liu, Mounir Benkiran, Kamel Chikhar, Dorina Surcel Colan, Audrey-Anne Gauthier, Charles-Emmanuel Testut, Frederic Dupont, Ji Lei, François Roy, Jean-François Lemieux, and Fraser Davidson
Geosci. Model Dev., 14, 1445–1467, https://doi.org/10.5194/gmd-14-1445-2021,https://doi.org/10.5194/gmd-14-1445-2021, 2021
Short summary
A fully coupled Arctic sea-ice–ocean–atmosphere model (ArcIOAM v1.0) based on C-Coupler2: model description and preliminary results
Shihe Ren, Xi Liang, Qizhen Sun, Hao Yu, L. Bruno Tremblay, Bo Lin, Xiaoping Mai, Fu Zhao, Ming Li, Na Liu, Zhikun Chen, and Yunfei Zhang
Geosci. Model Dev., 14, 1101–1124, https://doi.org/10.5194/gmd-14-1101-2021,https://doi.org/10.5194/gmd-14-1101-2021, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Meltwater sources and sinks for multiyear Arctic sea ice in summer
Don Perovich, Madison Smith, Bonnie Light, and Melinda Webster
The Cryosphere, 15, 4517–4525, https://doi.org/10.5194/tc-15-4517-2021,https://doi.org/10.5194/tc-15-4517-2021, 2021
Short summary
An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072, https://doi.org/10.5194/tc-15-4047-2021,https://doi.org/10.5194/tc-15-4047-2021, 2021
Short summary
Calibration of sea ice drift forecasts using random forest algorithms
Cyril Palerme and Malte Müller
The Cryosphere, 15, 3989–4004, https://doi.org/10.5194/tc-15-3989-2021,https://doi.org/10.5194/tc-15-3989-2021, 2021
Short summary
Multiscale variations in Arctic sea ice motion and links to atmospheric and oceanic conditions
Dongyang Fu, Bei Liu, Yali Qi, Guo Yu, Haoen Huang, and Lilian Qu
The Cryosphere, 15, 3797–3811, https://doi.org/10.5194/tc-15-3797-2021,https://doi.org/10.5194/tc-15-3797-2021, 2021
Short summary
The flexural strength of bonded ice
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967, https://doi.org/10.5194/tc-15-2957-2021,https://doi.org/10.5194/tc-15-2957-2021, 2021
Short summary

Cited articles

Belchansky, G. I. and Douglas, D. C.: Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data, Remote Sens. Environ., 81, 67–81, https://doi.org/10.1016/S0034-4257(01)00333-9, 2002. a
Canadian Ice Service: Manual of Ice (MANICE), available at: https://www.canada.ca/en/environment-climate-change/services/weather-manuals-documentation/manice-manual-of-ice/chapter-3.html#Egg, last access: 31 October 2019. a
Clausi, D. A., Qin, A. K., Chowdhury, M. S., Yu, P., and Maillard, P.: MAGIC: MAp-Guided Ice Classification System, Can. J. Remote Sens., 36, S13–S25, https://doi.org/10.5589/m10-008, 2010. a
Dedrick, K., Partington, K., Woert, M. V., Bertoia, C., and Benner, D.: U.S. National/Naval Ice Center Digital Sea Ice Data and Climatology, Can. J. Remote Sens., 27, 457–475, https://doi.org/10.1080/07038992.2001.10854887, 2001. a
Hallgren, K. A.: Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial, Tutorials in quantitative methods for psychology, 8, 23–34, 2012. a
Download
Short summary
Sea ice charts by the Canadian Ice Service (CIS) contain visually estimated ice concentration produced by analysts. The accuracy of manually derived ice concentrations is not well understood. The subsequent uncertainty of ice charts results in downstream uncertainties for ice charts users, such as models and climatology studies, and when used as a verification source for automated sea ice classifiers. This study quantifies the level of accuracy and inter-analyst agreement for ice charts by CIS.