Articles | Volume 14, issue 4
The Cryosphere, 14, 1289–1310, 2020
https://doi.org/10.5194/tc-14-1289-2020
The Cryosphere, 14, 1289–1310, 2020
https://doi.org/10.5194/tc-14-1289-2020

Research article 21 Apr 2020

Research article | 21 Apr 2020

Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2

Angela Cheng et al.

Related authors

A new state-dependent parameterization for the free drift of sea ice
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere, 16, 533–557, https://doi.org/10.5194/tc-16-533-2022,https://doi.org/10.5194/tc-16-533-2022, 2022
Short summary
A generalized stress correction scheme for the Maxwell elasto-brittle rheology: impact on the fracture angles and deformations
Mathieu Plante and L. Bruno Tremblay
The Cryosphere, 15, 5623–5638, https://doi.org/10.5194/tc-15-5623-2021,https://doi.org/10.5194/tc-15-5623-2021, 2021
Short summary
Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies
Damien Ringeisen, L. Bruno Tremblay, and Martin Losch
The Cryosphere, 15, 2873–2888, https://doi.org/10.5194/tc-15-2873-2021,https://doi.org/10.5194/tc-15-2873-2021, 2021
Short summary
Review article: Observations for high-impact weather and their use in verification
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021,https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
The Regional Ice Ocean Prediction System v2: a pan-Canadian ocean analysis system using an online tidal harmonic analysis
Gregory C. Smith, Yimin Liu, Mounir Benkiran, Kamel Chikhar, Dorina Surcel Colan, Audrey-Anne Gauthier, Charles-Emmanuel Testut, Frederic Dupont, Ji Lei, François Roy, Jean-François Lemieux, and Fraser Davidson
Geosci. Model Dev., 14, 1445–1467, https://doi.org/10.5194/gmd-14-1445-2021,https://doi.org/10.5194/gmd-14-1445-2021, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
A new state-dependent parameterization for the free drift of sea ice
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere, 16, 533–557, https://doi.org/10.5194/tc-16-533-2022,https://doi.org/10.5194/tc-16-533-2022, 2022
Short summary
Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
Madison M. Smith, Marika Holland, and Bonnie Light
The Cryosphere, 16, 419–434, https://doi.org/10.5194/tc-16-419-2022,https://doi.org/10.5194/tc-16-419-2022, 2022
Short summary
Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022,https://doi.org/10.5194/tc-16-259-2022, 2022
Short summary
A generalized stress correction scheme for the Maxwell elasto-brittle rheology: impact on the fracture angles and deformations
Mathieu Plante and L. Bruno Tremblay
The Cryosphere, 15, 5623–5638, https://doi.org/10.5194/tc-15-5623-2021,https://doi.org/10.5194/tc-15-5623-2021, 2021
Short summary
Wave dispersion and dissipation in landfast ice: comparison of observations against models
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021,https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary

Cited articles

Belchansky, G. I. and Douglas, D. C.: Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data, Remote Sens. Environ., 81, 67–81, https://doi.org/10.1016/S0034-4257(01)00333-9, 2002. a
Canadian Ice Service: Manual of Ice (MANICE), available at: https://www.canada.ca/en/environment-climate-change/services/weather-manuals-documentation/manice-manual-of-ice/chapter-3.html#Egg, last access: 31 October 2019. a
Clausi, D. A., Qin, A. K., Chowdhury, M. S., Yu, P., and Maillard, P.: MAGIC: MAp-Guided Ice Classification System, Can. J. Remote Sens., 36, S13–S25, https://doi.org/10.5589/m10-008, 2010. a
Dedrick, K., Partington, K., Woert, M. V., Bertoia, C., and Benner, D.: U.S. National/Naval Ice Center Digital Sea Ice Data and Climatology, Can. J. Remote Sens., 27, 457–475, https://doi.org/10.1080/07038992.2001.10854887, 2001. a
Hallgren, K. A.: Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial, Tutorials in quantitative methods for psychology, 8, 23–34, 2012. a
Download
Short summary
Sea ice charts by the Canadian Ice Service (CIS) contain visually estimated ice concentration produced by analysts. The accuracy of manually derived ice concentrations is not well understood. The subsequent uncertainty of ice charts results in downstream uncertainties for ice charts users, such as models and climatology studies, and when used as a verification source for automated sea ice classifiers. This study quantifies the level of accuracy and inter-analyst agreement for ice charts by CIS.