Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 13, issue 3
The Cryosphere, 13, 753–773, 2019
https://doi.org/10.5194/tc-13-753-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 753–773, 2019
https://doi.org/10.5194/tc-13-753-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Mar 2019

Research article | 05 Mar 2019

New ground ice maps for Canada using a paleogeographic modelling approach

H. Brendan O'Neill et al.

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
Brief Communication: The reliability of gas extraction techniques for analysing CH4 and N2O compositions in gas trapped in permafrost ice wedges
Ji-Woong Yang, Jinho Ahn, Go Iwahana, Sangyoung Han, Kyungmin Kim, and Alexander Fedorov
The Cryosphere, 14, 1311–1324, https://doi.org/10.5194/tc-14-1311-2020,https://doi.org/10.5194/tc-14-1311-2020, 2020
Short summary
Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019,https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019,https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis
Jing Tao, Randal D. Koster, Rolf H. Reichle, Barton A. Forman, Yuan Xue, Richard H. Chen, and Mahta Moghaddam
The Cryosphere, 13, 2087–2110, https://doi.org/10.5194/tc-13-2087-2019,https://doi.org/10.5194/tc-13-2087-2019, 2019
Short summary
Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019,https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary

Cited articles

Allard, M.: Interactive comment on “New ground ice maps for Canada using a paleogeographic modelling approach” by H. Brendan O'Neill et al., The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-200-RC2, 2018. 
Allard, M. and Kasper, J. N.: Temperature conditions for ice wedge cracking: field measurements from Salluit, northern Québec, in: Proceedings of the 7th International Permafrost Conference, Yellowknife, NT, 23–27 June 1998, Centre d'études nordiques, Université Laval, Québec City, Canada, 23–27 June 1998, 57, 5–11, 1998. 
Allard, M. and Seguin, M. K.: The Holocene evolution of permafrost near the tree line, on the eastern coast of Hudson Bay (northern Quebec), Can. J. Earth Sci., 24, 2206–2222, https://doi.org/10.1139/e87-209, 1987. 
Allard, M., Caron, S., and Bégin, Y.: Climatic and ecological controls on ice segregation and thermokarst: The case history of a permafrost plateau in Northern Quebec, Permafrost Periglac., 7, 207–227, https://doi.org/10.1002/(SICI)1099-1530(199609)7:3<207::AID-PPP219>3.0.CO;2-4, 1996. 
Atlas of Canada: Average maximum snow depth, Reference Outline Map Series 6355, Scale 1:7,500,000, Natural Resources Canada, Ottawa, ON, Canada, 2010. 
Publications Copernicus
Download
Short summary
In this paper, we present new models to depict ground ice in permafrost in Canada, incorporating knowledge from recent studies. The model outputs we present reproduce observed regional ground ice conditions and are generally comparable with previous mapping. However, our results are more detailed and more accurately reflect ground ice conditions in many regions. The new mapping is an important step toward understanding terrain response to permafrost degradation in Canada.
In this paper, we present new models to depict ground ice in permafrost in Canada, incorporating...
Citation