Articles | Volume 13, issue 3
https://doi.org/10.5194/tc-13-753-2019
https://doi.org/10.5194/tc-13-753-2019
Research article
 | 
05 Mar 2019
Research article |  | 05 Mar 2019

New ground ice maps for Canada using a paleogeographic modelling approach

H. Brendan O'Neill, Stephen A. Wolfe, and Caroline Duchesne

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024,https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024,https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary

Cited articles

Allard, M.: Interactive comment on “New ground ice maps for Canada using a paleogeographic modelling approach” by H. Brendan O'Neill et al., The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-200-RC2, 2018. 
Allard, M. and Kasper, J. N.: Temperature conditions for ice wedge cracking: field measurements from Salluit, northern Québec, in: Proceedings of the 7th International Permafrost Conference, Yellowknife, NT, 23–27 June 1998, Centre d'études nordiques, Université Laval, Québec City, Canada, 23–27 June 1998, 57, 5–11, 1998. 
Allard, M. and Seguin, M. K.: The Holocene evolution of permafrost near the tree line, on the eastern coast of Hudson Bay (northern Quebec), Can. J. Earth Sci., 24, 2206–2222, https://doi.org/10.1139/e87-209, 1987. 
Allard, M., Caron, S., and Bégin, Y.: Climatic and ecological controls on ice segregation and thermokarst: The case history of a permafrost plateau in Northern Quebec, Permafrost Periglac., 7, 207–227, https://doi.org/10.1002/(SICI)1099-1530(199609)7:3<207::AID-PPP219>3.0.CO;2-4, 1996. 
Atlas of Canada: Average maximum snow depth, Reference Outline Map Series 6355, Scale 1:7,500,000, Natural Resources Canada, Ottawa, ON, Canada, 2010. 
Download
Short summary
In this paper, we present new models to depict ground ice in permafrost in Canada, incorporating knowledge from recent studies. The model outputs we present reproduce observed regional ground ice conditions and are generally comparable with previous mapping. However, our results are more detailed and more accurately reflect ground ice conditions in many regions. The new mapping is an important step toward understanding terrain response to permafrost degradation in Canada.