Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 13, issue 2
The Cryosphere, 13, 627–645, 2019
https://doi.org/10.5194/tc-13-627-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 627–645, 2019
https://doi.org/10.5194/tc-13-627-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Feb 2019

Research article | 20 Feb 2019

Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm

Nils Hutter et al.

Related authors

Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
Nils Hutter and Martin Losch
The Cryosphere, 14, 93–113, https://doi.org/10.5194/tc-14-93-2020,https://doi.org/10.5194/tc-14-93-2020, 2020
Short summary
Simulating intersection angles between conjugate faults in sea ice with different viscous–plastic rheologies
Damien Ringeisen, Martin Losch, L. Bruno Tremblay, and Nils Hutter
The Cryosphere, 13, 1167–1186, https://doi.org/10.5194/tc-13-1167-2019,https://doi.org/10.5194/tc-13-1167-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays
Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings
The Cryosphere, 14, 2999–3016, https://doi.org/10.5194/tc-14-2999-2020,https://doi.org/10.5194/tc-14-2999-2020, 2020
Short summary
Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations
Igor E. Kozlov, Evgeny V. Plotnikov, and Georgy E. Manucharyan
The Cryosphere, 14, 2941–2947, https://doi.org/10.5194/tc-14-2941-2020,https://doi.org/10.5194/tc-14-2941-2020, 2020
Short summary
Classification of sea ice types in Sentinel-1 synthetic aperture radar images
Jeong-Won Park, Anton Andreevich Korosov, Mohamed Babiker, Joong-Sun Won, Morten Wergeland Hansen, and Hyun-Cheol Kim
The Cryosphere, 14, 2629–2645, https://doi.org/10.5194/tc-14-2629-2020,https://doi.org/10.5194/tc-14-2629-2020, 2020
Short summary
A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data
Marcel König and Natascha Oppelt
The Cryosphere, 14, 2567–2579, https://doi.org/10.5194/tc-14-2567-2020,https://doi.org/10.5194/tc-14-2567-2020, 2020
Short summary
Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, and Rasmus Tonboe
The Cryosphere, 14, 2469–2493, https://doi.org/10.5194/tc-14-2469-2020,https://doi.org/10.5194/tc-14-2469-2020, 2020
Short summary

Cited articles

Antonov, J. I., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., and Garcia, H. E.: World Ocean Atlas 2005, Volume 2: Salinity, U.S. Government Printing Office, Washington, D.C., 2006. a
Ashkezari, M. D., Hill, C. N., Follett, C. N., Forget, G., and Follows, M. J.: Oceanic eddy detection and lifetime forecast using machine learning methods, Geophys. Res. Lett., 43, 12234–12241, https://doi.org/10.1002/2016GL071269, 2006. a
Banfield, J.: Skeletal modeling of ice leads, IEEE T. Geosci. Remote, 30, 918–923, https://doi.org/10.1109/36.175326, 1992. a, b, c, d
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. a, b, c
Bröhan, D. and Kaleschke, L.: A Nine-Year Climatology of Arctic Sea Ice Lead Orientation and Frequency from AMSR-E, Remote Sensing, 6, 1451–1475, https://doi.org/10.3390/rs6021451, 2014. a, b
Publications Copernicus
Download
Short summary
Arctic sea ice is an aggregate of ice floes with various sizes. The different sizes result from constant deformation of the ice pack. If a floe breaks, open ocean is exposed in a lead. Collision of floes forms pressure ridges. Here, we present algorithms that detect and track these deformation features in satellite observations and model output. The tracked features are used to provide a comprehensive description of localized deformation of sea ice and help to understand its material properties.
Arctic sea ice is an aggregate of ice floes with various sizes. The different sizes result from...
Citation