Articles | Volume 13, issue 2
https://doi.org/10.5194/tc-13-627-2019
https://doi.org/10.5194/tc-13-627-2019
Research article
 | 
20 Feb 2019
Research article |  | 20 Feb 2019

Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm

Nils Hutter, Lorenzo Zampieri, and Martin Losch

Related authors

Impact of non-normal flow rule on linear kinematic features in pan-Arctic ice-ocean simulations
Jean-Francois Lemieux, Mathieu Plante, Nils Hutter, Damien Ringeisen, Bruno Tremblay, Francois Roy, and Philippe Blain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3831,https://doi.org/10.5194/egusphere-2024-3831, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024,https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024,https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
Nils Hutter and Martin Losch
The Cryosphere, 14, 93–113, https://doi.org/10.5194/tc-14-93-2020,https://doi.org/10.5194/tc-14-93-2020, 2020
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary

Cited articles

Antonov, J. I., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., and Garcia, H. E.: World Ocean Atlas 2005, Volume 2: Salinity, U.S. Government Printing Office, Washington, D.C., 2006. a
Ashkezari, M. D., Hill, C. N., Follett, C. N., Forget, G., and Follows, M. J.: Oceanic eddy detection and lifetime forecast using machine learning methods, Geophys. Res. Lett., 43, 12234–12241, https://doi.org/10.1002/2016GL071269, 2006. a
Banfield, J.: Skeletal modeling of ice leads, IEEE T. Geosci. Remote, 30, 918–923, https://doi.org/10.1109/36.175326, 1992. a, b, c, d
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. a, b, c
Bröhan, D. and Kaleschke, L.: A Nine-Year Climatology of Arctic Sea Ice Lead Orientation and Frequency from AMSR-E, Remote Sensing, 6, 1451–1475, https://doi.org/10.3390/rs6021451, 2014. a, b
Download
Short summary
Arctic sea ice is an aggregate of ice floes with various sizes. The different sizes result from constant deformation of the ice pack. If a floe breaks, open ocean is exposed in a lead. Collision of floes forms pressure ridges. Here, we present algorithms that detect and track these deformation features in satellite observations and model output. The tracked features are used to provide a comprehensive description of localized deformation of sea ice and help to understand its material properties.
Share