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Abstract. Leads and pressure ridges are dominant features of
the Arctic sea ice cover. Not only do they affect heat loss and
surface drag, but they also provide insight into the underlying
physics of sea ice deformation. Due to their elongated shape
they are referred to as linear kinematic features (LKFs). This
paper introduces two methods that detect and track LKFs in
sea ice deformation data and establish an LKF data set for
the entire observing period of the RADARSAT Geophysical
Processor System (RGPS). Both algorithms are available as
open-source code and applicable to any gridded sea ice drift
and deformation data. The LKF detection algorithm classi-
fies pixels with higher deformation rates compared to the im-
mediate environment as LKF pixels, divides the binary LKF
map into small segments, and reconnects multiple segments
into individual LKFs based on their distance and orientation
relative to each other. The tracking algorithm uses sea ice
drift information to estimate a first guess of LKF distribution
and identifies tracked features by the degree of overlap be-
tween detected features and the first guess. An optimization
of the parameters of both algorithms, as well as an extensive
evaluation of both algorithms against handpicked features in
a reference data set, is presented. A LKF data set is derived
from RGPS deformation data for the years from 1996 to 2008
that enables a comprehensive description of LKFs. LKF den-
sities and LKF intersection angles derived from this data set
agree well with previous estimates. Further, a stretched ex-
ponential distribution of LKF length, an exponential tail in
the distribution of LKF lifetimes, and a strong link to atmo-
spheric drivers, here Arctic cyclones, are derived from the
data set. Both algorithms are applied to output of a numeri-
cal sea ice model to compare the LKF intersection angles in
a high-resolution Arctic sea ice simulation with the LKF data
set.

1 Introduction

The Arctic sea ice cover is an aggregation of ice floes of dif-
ferent size that changes continuously due to thermodynamic
and dynamic processes. Thermodynamic processes slowly
modify the shape of floes by freezing and melting, but rapid
changes in floe shapes are caused by the deformation of the
brittle ice. The drivers of these events are mainly wind, ocean
currents, tides, and interaction with coastal geometries.

When the ice cover breaks, leads form along floe bound-
aries as strips of open ocean. In such an opening of the
ice cover there is strong upward heat flux from the warm
ocean to the cold atmosphere, causing new ice formation
and changes of the albedo. Colliding ice floes form pressure
ridges and ice keels that change both the atmosphere–ice and
the ice–ocean drag coefficient. Both leads and pressure ridges
are usually elongated features with lengths ranging from a
few meters up to hundreds of kilometers.

Multiple studies used large amounts and a great vari-
ety of satellite imagery of the Arctic ocean to describe the
characteristics of deformation features and gain insight into
the underlying physics. Lead densities were derived from
MODIS images in the thermal infrared for cloud-free parts
of the Arctic Ocean (Willmes and Heinemann, 2016), from
AMSR-E passive microwave brightness temperatures (Röhrs
and Kaleschke, 2012) and from CryoSat-2 altimeter data
(Wernecke and Kaleschke, 2015). Bröhan and Kaleschke
(2014) extracted pan-Arctic lead orientations from passive
microwave data using a Hough transform. Kwok (2001) pro-
vided a qualitative description of these deformation features
based on drift observations derived from synthetic-aperture
radar (SAR) imagery, combining leads and pressure ridges
under the term linear kinematic features (LKFs) due to their
dynamic nature. All these studies avoid the problem of de-
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tecting individual LKFs by applying statistics over continu-
ous fields such as sea ice deformation or concentration. Miles
and Barry (1998) presented a 5-year climatology of lead den-
sity and orientation based on manual detection in thermal-
and visible-band imagery. Manual detection was also used
to study the intersection angles of LKFs and their inferences
on the rheology describing sea ice deformation (Erlingsson,
1988; Walter and Overland, 1993).

All of these studies are limited to either specific informa-
tion (density or orientation) or a short time series due to la-
borious manual detection. First attempts to automatically ex-
tract LKFs from satellite data were based on skeletons to
describe LKFs (Banfield, 1992; Van Dyne and Tsatsoulis,
1993; Van Dyne et al., 1998), but Van Dyne et al. (1998)
suggested “knowledge-based techniques” to further divide a
skeleton into individual branches. This idea was picked up
in an algorithm that automatically detects LKFs as objects in
sea ice deformation data (Linow and Dierking, 2017). Only
10 RGPS snapshots were analyzed in this way, but many
more snapshots are necessary for a comprehensive descrip-
tion of LKFs. As the method of Linow and Dierking (2017)
does not contain a tracking algorithm for LKFs, only spatial
statistics can be derived from their detected LKFs and not
important temporal characteristics such as lifetime.

With increasing resolution of classical (viscous-plastic)
sea ice models (Hutter et al., 2018) or with new rheologi-
cal frameworks (e.g., Maxwell elasto-brittle, Rampal et al.,
2016; Dansereau et al., 2016), sea ice models start to resolve
small-scale deformation with larger floes and leads. Typical
measures for evaluating the modeled LKFs include scaling
properties of sea ice deformation (Hutter et al., 2018) or lead
area density (Wang et al., 2016). An evaluation of these sim-
ulations based on individual features would be far more com-
prehensive and thorough and would help to improve model
physics.

The objective of this study is to develop an open-source
algorithm that automatically detects deformation features in
regular gridded sea ice deformation data and then tracks them
using drift data. For this purpose, we present a modified ver-
sion of the detection algorithm of Linow and Dierking (2017)
and introduce an automatic tracking algorithm that takes into
account the advection of deformation features with the over-
all sea ice drift as well as growing and shrinking features.
Both algorithms are applied to the entire RADARSAT Geo-
physical Processor System (RGPS) drift and deformation
data set to produce a multi-year LKF data set that makes a
comprehensive description of spatiotemporal characteristics
of LKFs possible.

2 Data

One main requirement of the LKF detection algorithm pre-
sented in this study is that it should be applicable to both
satellite observations and output of numerical sea ice mod-

els. Thus, we use deformation data to detect LKFs rather than
passive microwave data (Bröhan and Kaleschke, 2014) or
thermal infrared imagery (Willmes and Heinemann, 2016),
which is usually not simulated in a sea ice model. Sea ice
deformation, which is derived from sea ice drift, can be ob-
served by satellite, ship radar, and buoys and it is also simu-
lated by numerical models.

2.1 Deformation data

In this study, we use deformation data provided by RGPS
(Kwok, 1998, data obtained from https://rkwok.jpl.nasa.gov/
radarsat/index.html, last access: 15 February 2019). This data
set is based on sea ice drift derived by tracking ice motion in
SAR images. In each freezing season points are initialized
on a regular 10 km grid that are tracked over the winter until
the onset of the melting season. A Lagrangian deformation
data set is computed from these trajectories using line inte-
gral approximations (e.g., Lindsay and Stern, 2003). Data are
available for the years 1997 to 2008 with varying spatial cov-
erage of the Amerasian Basin. We use the gridded version of
the RGPS data set for our analysis, which is interpolated onto
a regular grid with 12.5 km grid spacing.

2.2 Drift data

To track features detected by the LKF detection algorithm in
RGPS deformation data, the drift between two RGPS records
is required for an a priori guess of the temporal continua-
tion of the individual feature. In the RGPS data set the de-
rived deformation data are published along with the origi-
nal drift data that is used for the deformation rate computa-
tion. Since RGPS drift is only provided as a Lagrangian data
set (Kwok, 1998, data obtained from https://rkwok.jpl.nasa.
gov/radarsat/index.html), we interpolate the drift to the same
regular 12.5 km grid on which the deformation data are pro-
vided.

2.3 Evaluation data set

Automated object detection requires an evaluation against
validation data. For this purpose, we use the data set of hand-
picked LKFs presented in Linow and Dierking (2017). This
data set comprises 1411 LKFs detected visually for 12 RGPS
snapshots (29 December 2005 to 2 February 2006). The in-
trinsic localization uncertainty of the visually detected fea-
tures was shown to be 0.75 pixel with 1 pixel corresponding
to a grid cell of size 12.5 km× 12.5 km and the uncertainty in
the line length being 8 % (Linow and Dierking, 2017).

Since this data set only provides LKFs for single snap-
shots but does not include information about the temporal
evolution of LKFs between different snapshots, we need to
expand the data set in this regard. In doing so, we advect the
handpicked LKFs of one snapshot using the RGPS drift to
obtain an a priori guess of LKF position in the next snapshot.
We visually compare the advected LKFs from the previous
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snapshot to LKFs of the next snapshot. If two LKFs overlap
and agree in the entire overlapping area in position, shape,
and orientation, they are marked a tracked LKF. Furthermore,
each tracked LKF is described by probability, degree of over-
lap, and type of shape change (no change, growing, shrink-
ing, and branching), which are all visually estimated. In to-
tal 392 LKFs were tracked within these 12 RGPS snapshots,
which corresponds to ∼ 28% of the LKFs in the evaluation
data set. For the remaining 1019 LKFs no matching LKF in
the next record is found. Thus, these LKFs have a lifetime
that is shorter than the temporal resolution of 3 days if errors
in the manual tracking are not considered.

3 LKF detection

3.1 Method description

Our LKF detection algorithm consists of three parts: (1) a
preprocessing step that transforms the input deformation data
into a binary map of pixels that mark LKFs by using differ-
ent filter steps, (2) a detection routine that splits the network
of LKF pixels in the binary map into the smallest possible
segments, and (3) a reconnection instance that estimates the
probability of different segments belonging to one feature
and then connects all segments of a LKF. The general struc-
ture of the algorithm follows Linow and Dierking (2017),
although individual parts have been modified substantially.
The main enhancements of the algorithm are a parallel de-
tection of segments with a stronger constraint on the cur-
vature and the introduction of a probability-based reconnec-
tion. Further, the entire algorithm was rewritten in Python
(Python Software Foundation, http://www.python.org, last
access: 15 February 2019) to avoid license issues with the
previous code that was based on the commercial software
IDL.

3.1.1 Data preprocessing and filtering

The standard input data of the LKF detection algorithm is the

total deformation rate of sea ice ε̇tot =

√
ε̇2

I + ε̇
2
II, where ε̇I is

the divergence and ε̇II the shear that can be derived from both
satellite data and model output (Fig. 1a). LKFs are defined
by regions of high deformation rates because they are lo-
cated along the boundaries of ice floes where most deforma-
tion takes place. The actual magnitude of deformation along
an LKF, however, varies with the background deformation
and the spatial scale because of its multi-fractal properties
(Weiss, 2013). Thus a simple thresholding of deformation
rates is not sufficient to filter LKFs. Instead, we are inter-
ested in detecting deformation that is notably higher than the
local environment. As LKFs are lines of high deformation,
we need to detect edges in the deformation field.

Prior to the edge detection, we take the natural logarithm
of the input field (Fig. 1b) and perform a histogram equal-

ization (Fig. 1c). Both highlight the local differences across
different scales and enhance the contrast in regions of low
deformation rates.

We use a difference of Gaussian (DoG) filter following
Linow and Dierking (2017) for the edge detection (Fig. 1d).
The DoG filter subtracts two filtered versions of the same
input data: the first is smoothed with a Gaussian kernel of
radius r1 = 1 pixel corresponding to a half-width σ1 = 0.5,
and the second is smoothed with a Gaussian kernel of ra-
dius r2 = 5 pixels (half-width σ2 = 2.5), where r1 < r2. The
smaller radius r1 corresponds to the smallest scale of fea-
tures that will be detected by the DoG and the second ra-
dius r2 provides the upper limit of the scales detected. Note
that this scale limitation applies to the width of the LKFs as
well as to their lengths. For edges of scale r1 < L< r2, the
DoG-filtered values are positive because the local deforma-
tion rate is higher than in the environment of radius r2. Pixels
are marked as LKFs when the DoG-filtered pixels are larger
than a positive threshold dLKF. The result is a binary map in
which pixels with a value of 1 belong to LKFs (see Fig. 1e
for a threshold of 15). The threshold dLKF does not have a
unit as it describes the difference of two histogram-equalized
images, for which the highest deformation rate corresponds
to a pixel value 255 and the lowest to a value of 0.

At this point, LKFs in the binary map are still repre-
sented in their original width. To detect which pixels be-
long to which LKF we add a further level of abstraction and
reduce the width of all LKFs to 1 pixel (Fig. 1f). To this
end, a morphological thinning algorithm reduces the binary
map to its skeleton. We use the skeletonize function of
the open-source Python package scikit-image (van der
Walt et al., 2014) based on Zhang and Suen (1984). Skele-
tonization was used before to detect leads in original or clas-
sified, that is, preprocessed and charted, SAR images (Ban-
field, 1992; Van Dyne and Tsatsoulis, 1993; Van Dyne et al.,
1998).

3.1.2 Segment detection

We detect small segments of pixels that contain parts of one
LKF in the binary map. Based on the morphological thinned
binary map, groups of pixels that form a line are detected. In
this first detection step, we want to guarantee that all pixels
of a detected segment belong to the same LKF. Therefore, we
detect the smallest segments possible that are in the simplest
case the points in between intersections of lines in the binary
map (Fig. 1f).

As a starting point of the segment detection we use LKF
pixels that have only one neighboring cell also marked as
LKF. Within each iteration, the detection algorithm proceeds
to the LKF neighbor and again checks the number of neigh-
boring cells for LKFs. If the new cell also only has one neigh-
boring LKF cell (neglecting the cell from the prior iteration)
the search is continued. If the new cell has more than one
neighboring LKF cell, that is, it is a junction, the detection
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Figure 1. Filter sequence from (a) input field total deformation to (f) final output of the morphological thinned binary map of LKF pixels.
Intermediate steps are (b) logarithmic deformation, (c) histogram equalization, (d) difference of Gaussian filter, and (e) the thresholded
output of the DoG filter. RGPS deformation data for 1 January 2006 are used for this example.

cycle is stopped and these neighboring points become the
new starting points. In addition to the number of neighboring
LKF cells, a change in direction compared to the orientation
of the last 5 pixels can also terminate the detection cycle: if
the angle between the line connecting the centers of the po-
tential new cell and the current cell and the linear fit to the
previous 5 pixels of the segment exceeds 45◦, the detection
cycle is interrupted and the new cell is marked as a new start-
ing point. If the segment is still shorter than 5 pixels, all avail-
able pixels are taken into account. We use 5 pixels in contrast
to 2 pixels used by Linow and Dierking (2017) to impose a
stronger constraint on the curvature. As in the 2 pixel case, a
90◦ shift of direction is possible within two steps of the de-
tection. Within each cycle of the detection algorithm, pixels
that have been assigned to a segment are removed from the
input binary map to prevent double assignments. This proce-
dure is repeated until no new starting cells are found.

After removing all linear segments, the remaining binary
map contains only non-LKF pixels or LKFs forming closed
contours with no starting points. The closed contours are
opened by arbitrarily marking pairs of two neighboring LKF
pixels (every (i · 100)th and (i · 100+ 1)th LKF pixel for
i = 1,2,3, . . .) as starting points. Then the segment detection
is repeated until no new starting points are found. The ini-

tialization step to open closed contours is then repeated until
all LKF pixels in the binary map are assigned to a linear seg-
ment. All segments that were detected are shown in Fig. 2a
for 1 January 2006.

3.1.3 Reconnection

The reconnection instance is designed to connect multiple
detected segments that belong to the same LKF. Two seg-
ments belonging to the same LKF should have a similar ori-
entation and deformation magnitude and they should be in
close proximity to each other. Thus, we compute the proba-
bility for all possible pairs of segments to be part of the same
LKF based on their distance, their orientation, and their de-
formation rates. The two segments of the pair with the high-
est probability are connected and the probabilities of pairs
containing one of the two are updated. These steps are iter-
ated until no new matches are found. This part of the algo-
rithm represents a new feature compared to Linow and Dierk-
ing (2017).

The central element of the reconnection step is the proba-
bility matrix P ∈ IRN×N that stores the probabilities for all
pairs of segments withN being the number of segments. The
rows and columns correspond to single segments, for which
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Figure 2. (a) Detected segments and the results of (b) the first reconnection step and (c) the second reconnection step for RGPS deformation
data from 1 January 2006. Each color denotes a different segment or LKF. Due to a limited number of colors, different segments or LKFs
can have the same color. The output of the second reconnection step is the final output of the LKF detection algorithm.

P(m,n) gives the probability of segment m and n being part
of the same LKF. The probability is given by

P(m,n)=

√((
1D(m,n)

D0

)2

+

(
1O (m,n)

O0

)2

+

(
1log10ε̇ (m,n)

ε̇0

)2)
, (1)

with the elliptical distance 1D between the two segments,
the difference in orientation 1O, and the difference of the
logarithm of the total deformation rate1log10ε̇. Here we use
the common logarithm, i.e., log base 10, in contrast to the
natural logarithm used in Sect. 3.1.1 to directly describe the
difference in the order of magnitude in the total deforma-
tion of two segments. The difference in orientation 1O is
determined by the angle between the two segments, which
are represented in this computation by a line connecting the
start and the end point. The elliptical distance describes the
distance between both segments, but also takes into account
the alignment of the segments. In doing so, we decompose
the vector connecting both ends of the segments va→b into
an orthonormal basis with one vector parallel to the first seg-
ment a‖ and one vector perpendicular to it a⊥ as shown in
Fig. 3. In the same way, vb→a is decomposed into a basis for
the second segment b‖, b⊥,

va→b =
(
a‖,a⊥

)
·α

!
= vb→a =

(
b‖,b⊥

)
·β, (2)

where α and β are the coefficients of the vector decom-
position. In the computation of the length of the connect-
ing vector v, the component perpendicular to the segment
is weighted with an elliptical factor e > 1 and the distance
computed by both bases is averaged to obtain a symmetrical
elliptical distance, that is, v = va→b = vb→a :

‖v‖e =
1
2
(‖va→b‖e+‖vb→a‖e)

=
1
2

(√
αT ·

(
1 0
0 e

)
·α+

√
βT ·

(
1 0
0 e

)
·β

)
=1D. (3)

We consider only pairs of segments in which the starting
point of one segment lies in the direction of the other seg-
ment, that is, α (0)≥ 0 or β (0)≤ 0. Thus points with the
same elliptical distance lie on a half ellipse centered at the
endpoint of the segment as denoted in Fig. 3. The computed
probability for a generic pair of segments P(m,n)= P(n,m)
is symmetric, because both the elliptical distance, the orien-
tation difference and the deformation rate difference are sym-
metric. Thus, we only compute P(m,n) with m< n, where
P is simplified as an upper diagonal matrix.

The parameters D0, O0, and ε̇0 not only normalize the in-
dividual components of Eq. (1) but also serve as an upper
threshold for these components. If for one pair the elliptical
distance 1D, the difference in orientation 1O, or the defor-
mation rate1ε̇ exceeds the thresholdD0,O0, and ε̇0, it is not
considered for the reconnection. The threshold values will be
determined in Sect. 3.1.4 and are given in Table 1.

After initializing the matrix P, the pair of segments
with the highest probability P(m,n) is connected and the
connected segment (m n) replaces the old segment m.
Thereby the number of segments is reduced by one and the
nth row and nth column are removed from the probability
matrix P. The elements of the probability matrix that corre-
spond to the segmentsm need to be updated and thus themth
row and mth column of P are reevaluated based on the new
connected segment (m n). This process is iterated, and in
each iteration the pair of segments with the highest probabil-
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Table 1. List of parameters used in the LKF detection algorithm. For each parameter the lower and upper bounds of the optimization are
given along with the final choice of the parameter value.

Parameter name Symbol Lower Upper Final Unit
bound bound choice

DoG filtering threshold dLKF 0 30 15c –
Max. elliptical distance D0 1 7 4b pixels
Elliptical factor e 1 5 2 –
Max. difference in orientation O0 25 65 35 ◦

Max. difference in deformation ε̇0 0.5 1.25 1.25 log(day−1)
Min. length lmin 3 7 3 pixels
Min. radius of DoG r1 1ab pixels
Max. radius of DoG r2 5ab pixels

a Parameters that have not been optimized but taken from Linow and Dierking (2017). b Parameters are related to
length scales and need to be scaled with the spatial resolution of the input data. c Parameters are used to suppress
noise in the input data and need to be adapted individually to input data.

Figure 3. Sketch of two segments A and B illustrating the princi-
ple behind the elliptical distance. In the distance computation the
component pointing in the direction perpendicular to the segment
is weighted by a factor of e. Within the shaded area the elliptical
distance is below a threshold D0. If the endpoints of both segments
lie within the area where both shaded half ellipses overlap, they are
considered for reconnection. The dotted lines indicate the orienta-
tion of lines connecting the start and end points of both segments
and the angle 1O is the difference in orientation. v is the vector
connecting the endpoints of both segments as defined in Eq. (2).
a‖ and a⊥ are basis vectors aligned in the direction of segment A,
respectively b‖ and b⊥ for B.

ity is connected, until no pair is left that satisfies the threshold
values D0, O0, and ε̇0.

In the final step of the LKF detection algorithm, fea-
tures that fall below a minimum length lmin are removed
because most small features are artifacts of the thinning al-
gorithm and do not represent LKFs. With increasing mini-
mum length, the number of detected LKFs decreases and the
field of the detected LKFs shows a higher degree of abstrac-
tion. The minimum resolution of the detected LKFs, how-
ever, is determined by the minimum length used for the DoG
filtering. The presented reconnection procedure shows bet-
ter results for longer segments because the orientation and
mean deformation is more sensitive for smaller segments.
In theory, the best input would be segments containing all
the points in the binary map that lie in between “junctions”

of the lines, assuming that all those points belong to the
same LKF. The segment detection instance, however, yields
smaller segments due to the parallel detection that has been
implemented to increase computational efficiency. Thus, we
apply the reconnection algorithm twice: the first instance is
meant to compensate for the tendency of the segment de-
tection algorithm to divide segments into smaller pieces al-
though they actually belong to the same inter-junction seg-
ment. Thus, we use very a restrictive set of threshold values
(maximum distanceD0 = 1.5 pixels, maximum difference in
orientation O0 = 50◦, maximum difference in deformation
rate ε̇0 = 0.75 log (day−1), elliptical factor e = 1, and mini-
mum length lmin = 2 pixels) to ensure that only segments are
reconnected that are not separated by more than 1 pixel and
no segments are removed because they are short (Fig. 2b).
The second reconnection instance with a different set of pa-
rameters is then used to reconnect segments across junctions
and to generate the final LKFs shown in Fig. 2c. The choice
of the set of parameters used in the second reconnection in-
stance is discussed in Sect. 3.1.4.

3.1.4 Parameter selection

There are a number of parameters in the detection algorithm.
For some of them the range of possible choices can be nar-
rowed down with information from field and satellite obser-
vations as well as theory of ice fracture, but none of them are
strictly constrained. Therefore, we attempted an optimization
of the set of parameters, mainly of the reconnection step,
given in Table 1.

The main challenge of the optimization is the strong non-
linearity of the detection algorithm. The main source of non-
linearity is the fact that whether a feature is detected or not
can depend sensitively on small changes of a parameter. An-
other source of nonlinearity is the small number of refer-
ence data. The strong nonlinearity of the problem constrains
both the definition of the cost function and the optimization
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method to make sure that the optimized solution is the global
minimum of the cost function.

We constructed different cost functions, ranging from sim-
ple counts of falsely undetected features by the algorithm
to a cumulative modified Hausdorff distance (MHD) be-
tween all detected and handpicked features as a cost function,
in an effort to smooth the strong nonlinearity. In addition,
we used different nonlinear optimization routines including
basin-hopping (Wales and Doye, 1997) and a nested brute-
force implementation. No combination of cost function and
optimization method leads to a satisfying result because in
all cases the cost function was very sensitive to smaller vari-
ations in the parameters. We concluded that finding a global
minimum of the cost function is impossible. Therefore, we
use a set of parameters estimated with a simple brute-force
algorithm that minimizes the number of not-detected features
for the range of parameters given in Table 1, in which for
each parameter five equally spaced values within its range
are used. We do not regard this set of parameters as the global
optimum but rather as a useful working basis given the strong
nonlinearity of the problem and the limited number of refer-
ence data. The performance of the detection algorithm with
this set of parameters is evaluated in detail in Sect. 3.2.

3.2 Evaluation

In the evaluation we use all data for January 2006 (11 snap-
shots) from the handpicked LKF data set, the LKFs detected
by the algorithm presented in this study, and LKFs detected
by the original version of this algorithm (Linow and Dierk-
ing, 2017). The reference data of the original algorithm are
generated with the parameters used in the evaluation section
of Linow and Dierking (2017). In this way, we evaluate the
overall ability of the method to properly detect LKFs but also
check whether the modifications and new additions improve
the performance of the algorithm. We determine to what de-
gree the algorithms can detect the same features that were
recognized by visual inspection and furthermore provide de-
tailed information about the similarity and differences be-
tween automatically detected and handpicked features in an
element-wise comparison.

The principal idea behind this evaluation is that we com-
pare the features pairwise: one LKF from the handpicked
data with the best-matching automated detected LKF. We
find the best matching automatically detected feature for each
handpicked feature by minimizing the MHD (Dubuisson and
Jain, 1994) between the handpicked features and all automat-
ically detected features. Next, we categorize all pairs by the
degree of overlap of the handpicked feature with its closest
matching detected feature. The overlap between two features
is illustrated in Fig. 4. The number of pixels for which the
distance to the closest pixel in the matching feature is smaller
than dO = 3 pixels is defined as overlap, labeled as OA and
OB in Fig. 4. To distinguish between the overlap of feature
pairs that have a similar shape but are displaced and pairs that

Figure 4. Illustration of overlap between two LKFs A and B.

overlap only due to intersection of both features, we compute
the angle between overlapping parts of the matching pairs θO.
If this angle is smaller than θO < 25◦, the overlap of a match-
ing pair is defined by the minimum of overlapping pixels of
both matching partners normalized by the maximum length
of both matching partners:

O =min(len(OA), len(OB))/max(len(A), len(B)),
for θO < 25◦. (4)

Given this definition of overlap, we distinguish among three
different classes of pairs: (1) fully matching pairs that have
an overlap larger than 60 %, (2) partly matching pairs that
have an overlap smaller than 60 % but larger than 0 %, and
(3) not matching pairs with overlap equal to 0 %.

The overall performance of the algorithm with respect to
the overlap of the detected features with the reference data set
is given in Fig. 5 along with the number of pairs within each
class. We find that the features detected with our new algo-
rithm overlap significantly more with the handpicked refer-
ence data than the features detected with the original version
of the algorithm (Fig. 5). The original version of the algo-
rithm is run with the same parameters used in the evaluation
section of Linow and Dierking (2017). Our modifications to
the algorithm increase the number of fully matching LKFs
by 66 % (from 314 to 522), along with a similar number of
partly matching LKFs (from 635 to 657) and a clear decrease
of 66 % for the not matching LKFs (from 347 to 117). This
indicates a significant improvement of the original algorithm.

We analyze the similarity of features of all pairs within
each class to test whether these improvements are made at
the expense of the quality of the detected features. In doing
so, we define three metrics to determine the similarity of the
features: (1) the mean endpoint distance, (2) the line length
error, and (3) the MHD as metrics, at which the first two
were introduced by Linow and Dierking (2017). The MHD
is a measure of the general agreement of two shapes. It takes
into account changes in both orientation and length but also a
complete change in shape. In the sea ice context, the MHD is
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Figure 5. Evaluation of the detection algorithm presented in this
study and the original algorithm (Linow and Dierking, 2017) against
handpicked LKFs. The cumulative frequency of occurrence of the
overlap is given in the center plot. The number of features is given
in the bar plots for each class (fully matching, partly matching, and
not matching).

applied, for example, to evaluate the ice edge position in sea
ice forecasts (Dukhovskoy et al., 2015) or to assess the pre-
dictability of LKFs (Mohammadi-Aragh et al., 2018). Here
we only focus on the class of full matching pairs.

For the mean endpoint distance, we determine the distance
between both endpoints of the detected and the handpicked
features for each pair and average them. For all full match-
ing pairs with features detected by our new algorithm the
endpoint distance tends to be smaller compared to features
detected by the original version of the algorithm, which is
indicated by the shift in the distribution towards smaller er-
rors (Fig. 6a). The improved match because of the modifica-
tions to the original algorithm is also reflected in the smaller
mean error (1.47 pixels as opposed to 1.96 pixels of the origi-
nal algorithm). For 75 % of the features detected with our al-
gorithm, the mean endpoint distance is smaller than 2 pixels
whereas this is only the case for 60 % of features detected by
the original version.

The line length error is determined by the difference in
length of the two features in a pair normalized by length
of the smaller feature of the pair. For both algorithms, the
distributions are similar with similar mean errors of ∼ 18 %
(Fig. 6b). For half of the pairs the line length error is also
lower than 15 % in both cases.

We find that our modifications to the original algorithm
also reduce the average MHD from 1.58 to 1.17 pixels
(Fig. 6c). A total of 73 % of these pairs lie within the fifth
to 95th percentiles of the background MHD defined as the
MHD of the reference data and the morphological thinned
binary LKF field (Fig. 1f). Since all LKFs consist of sets of
pixels from this binary field, the background MHD is an up-
per limit of how accurate a reconnection algorithm can be-
come using this binary field as an input value.

In conclusion our new version of the algorithm improves
the original algorithm in that it detects more features and
also increases their agreement with the handpicked reference
data.

3.3 Discussion

Our adapted detection algorithm greatly improves the orig-
inal version. The total number of handpicked features that
is reproduced by the algorithm increased by 66 %. In ad-
dition, the quality of the detected features with respect to
their mean endpoint distance, the error in line length, and
the MHD is improved. We attribute these improvements to
two changes that stand out in addition to smaller adjustments
in the code: (1) the introduction of a probability-based recon-
nection and (2) the optimization of the DoG threshold dLKF,
which showed the highest sensitivity in the optimization. We
use this threshold to filter LKFs as regions that have high
deformation rates compared to the local environment. The
deformation rates in RGPS are known to be prone to grid-
scale noise and uncertainties caused by tracking and geoloca-
tion errors (Lindsay and Stern, 2003; Bouillon and Rampal,
2015), which can lead to a false classification of a pixel as
LKF. Increasing the threshold slightly suppresses this noise,
albeit at the expense of losing features with smaller defor-
mation rate differences. Thus the threshold needs to be opti-
mized to balance both effects; we found dLKF = 15 to be the
best parameter choice for the RGPS data set.

In our algorithm we reconnected segments to LKFs based
on a probability computed from the characteristics of the seg-
ments. Thereby those segments that fit “the best” are recon-
nected, and in contrast to Linow and Dierking (2017) the re-
connection does not depend on the order in which the recon-
nection algorithm runs over the list of segments. In doing so,
we improve the quality of the detected features and obtain a
unique and consistent solution. Both uniqueness and consis-
tency are necessary ingredients for the ensuing application of
a tracking algorithm.

In this context, we found the elliptical distance 1D and
the orientation 1O to be the important contributors to the
probability function. The optimized threshold 1ε̇0 = 1.25
for differences in deformation rates is very high (as it is ap-
plied to the difference of the common logarithm of the de-
formation rates, a difference between deformation rates of
a factor 101.25

= 17.78 is possible), so that differences in
deformation rates are normalized by a large value and do
not contribute much to the probability function. Omitting
the deformation-related part in Eq. (1) (equivalent to set-
ting 1ε̇0 =∞) does not change the results of the evaluation
of the optimized solution very much (not shown here). The
small influence of the threshold for deformation rates 1ε̇0
on the performance of the algorithm may also be caused by
the noise in the RGPS data along LKFs (Bouillon and Ram-
pal, 2015). Smaller segments, especially, are affected by the
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Figure 6. Statistics of all full matching pairs computed for the algorithm presented here and the original version (Linow and Dierking, 2017):
(a) the mean endpoint distance, (b) the line length error, and (c) the modified Hausdorff distance (MHD). The background MHD refers to
MHD calculated for the handpicked features and the morphological thinned binary field (Fig. 1f).

noisy RGPS data so that segments that belong to the same
LKF may have different deformation rates.

4 LKF tracking

The dynamic nature of the ice pack with spontaneous frac-
ture, fast propagation of failure lines, and discontinuous
drift fields makes tracking of deformation features in the
ice a challenge. Because most of these processes occur on
timescales from seconds to days, the temporal resolution
of the RGPS data set of 3 days makes feature tracking
even more challenging. In this section, we present an algo-
rithm that automatically tracks features and we compare the
tracked features to hand-tracked features.

4.1 Method description

The tracking of deformation features, in fact any feature, be-
tween two time records is always a two-step problem: first,
the deformation features are detected for both records sepa-
rately and, second, the features of both time records are con-
nected in time by identifying features of the first record with
those of the second record.

Between two RGPS time records (3 days) a deforma-
tion feature will be advected and can undergo the follow-
ing changes: (1) it can become inactive, (2) it can shrink, or
(3) it can undergo a combination of growing and shrinking.
Thus, on top of two time records, tracking requires drift in-
formation between these records. From the same drift fields
that were used to derive the deformation data we estimate a
first-guess position of each feature from the first record in
the second record that neglects all effects but advection. We
compute the drift first-guess position in pixel space (each fea-
ture in the first record is described by integer pixel indices)
by normalizing the drift speed with the grid resolution. Thus,

the computed first-guess positions are given in floating point
indices of the input field of the detection algorithm.

For the following description, a tracked feature is a feature
from record two with an associated feature in record one; a
matching pair is a pair of associated features from records
one and two; and all matching pairs are called the tracks.

A tracked feature in the second record is required to over-
lap at least in part with the first-guess position after growing
and shrinking in between the time records is taken into ac-
count. We define a search window around the first-guess po-
sition of the feature to test for an overlap of the features with
the first-guess position. The search window consists primar-
ily of pixels for which the floating point indices of the first-
guess position are rounded up and down by the Python func-
tions ceil and floor. To take into account the position
uncertainty caused by the morphological thinning algorithm,
we also add all neighboring pixels of the pixels with rounded
indices using the mean background MHD of the morphologi-
cal thinned field (Fig. 6c) of 0.78 pixel as an estimate for this
uncertainty. All features in the second record that include a
minimum number of pixels omin = 4 of the search window
are marked as potentially tracked features. If we consider
a feature that changes shape only due to advection without
any growing or shrinking, the tracked feature from the sub-
sequent time record should lie completely within the search
window.

During the course of 3 days, however, many features grow
or an opening closes at one or both ends of the detected fea-
ture. Also, in rare cases, only parts of a feature close and
a new branch is formed within the position of the old fea-
ture. This will be referred to as branching. Our algorithm is
designed to take into account only growing and shrinking be-
cause in our experience there are rather few branching LKFs
(10 %) and because branching is very complex to track. Thus,
a feature that is considered as a tracked feature is allowed to
grow at both ends compared to the first record or to shrink
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to only a part of the original feature. To translate this into an
algorithm, we define a search area that is the area enclosed
by two lines through the endpoints of the first-guess position.
These lines are perpendicular to the orientation of the first-
guess position (see grey shaded area Fig. 7). For a tracked
feature, all points of this feature that lie within the search
area need also to lie within the search window. Here, we im-
plement a threshold value pw/a that defines the fraction of
points within the search window and points within the search
area for the feature to be considered as a tracked feature. Fea-
tures, for which more pixels lie within the search area but not
in the search window, have likely undergone branching or
just intersect with the first-guess position but have a different
orientation.

The last step of the tracking algorithm filters small features
inside the search window that intersect with the first-guess
position. Due to their short length all of their points in the
search area also lie in the search window. To exclude those
we compute the overlap as defined in Sect. 3.2 between the
first-guess position and the potentially tracked feature. We
use a maximum distance of pixels of dO = 1.5 and an an-
gle threshold of θO = 25◦ for the computation of the overlap.
All potentially tracked features with a nonzero overlap are
marked as tracked features.

For all features of the first record this procedure is repeated
iteratively: (1) advect the feature using the drift information
to obtain the first-guess position, (2) check for features that
share omin pixels with the search window, (3) compute the
fraction of pixels in the search window and in the search
area pw/a, and (4) test for nonzero overlap. The output of
the tracking algorithm is a list of matching pairs of always
one feature from the first record and a tracked feature from
the second time record.

4.2 Parameter optimization

In the tracking algorithm the four parameters omin, pw/a, dO,
and θO are not very well constrained, so we attempt to opti-
mize them within plausible bounds. As we want to optimize
the tracking algorithm independently of the detection algo-
rithm, we use the handpicked features as input for the track-
ing algorithm and compare the output to the hand-tracked
features. We perform the same very basic optimization as in
Sect. 3.1.4 facing similar problems with a limited number
of reference data and a nonlinear cost function. We choose
equally spaced values in the range given in Table 2 for all four
parameters and determine the number of correctly tracked
features, the missed tracks, and false positives. We find that
decreasing omin and increasing pw/a, dO, and θO leads to an
increase in correctly tracked features along with a large in-
crease in false positives. To balance both effects, we define
the cost function as the number of correctly tracked features
subtracted by the number of missed tracks and the number
of false positives. The final parameter set that maximizes this
difference is given in Table 2.

Figure 7. Principle of the tracking algorithm showing the search
area and search window. A is the original feature (dashed blue) and
Ad (blue) the first-guess position considering only drift. B and C
are two features in the second record, in which B is marked as a
successfully tracked feature.

4.3 Evaluation

To separate the two steps of feature tracking, and to enable
an independent evaluation of the tracking algorithm, we ap-
ply the tracking algorithm to two different LKF data sets:
the handpicked features and the features extracted by the de-
tection algorithm for the same time span. Then, we com-
pare both results to the hand-tracked features described in
Sect. 2.3.

We evaluate the tracking algorithm independently by ap-
plying it to the handpicked features and test whether the
algorithm reproduces the hand-tracked features of the next
time record, hereafter referred to as “only tracking”. The al-
gorithm picks 336 (85.7 %) of the overall 392 handpicked
tracked features correctly and only misses 56 (14.3 %). In ad-
dition to the missed tracks, the algorithm detects 89 false pos-
itives. We use the information describing the type in change
of shape (no change, growing, shrinking, and branching) pro-
vided for the handpicked tracks to test the performance of the
algorithm for those different types of change (Fig. 8a). The
performance of the algorithm ranges from 85 % to 88 % for
the different types with the branching type being an excep-
tion for which only 56 % of the features are tracked correctly.
This is not surprising as the algorithm is not designed to track
this type of change.

In the evaluation of both the detection and tracking al-
gorithms, we distinguish between missed tracks that were
not tracked by the tracking algorithm and tracks that were
missed because the detection algorithm was not able to de-
tect the corresponding features in both time records. First, we
test whether the detection algorithm picks both features of a
handpicked matching pair. In doing so, we separate both fea-
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Table 2. List of parameters used in the LKF tracking algorithm. For each parameter the lower and upper bounds of the optimization are given
along with the final choice of the parameter value.

Parameter name Symbol Lower Upper Final Unit
bound bound choice

Min. overlap in search window omin 2 6 4 pixels
Fraction of pixels in search window and in search area pw/a 0.5 1 0.75 –
Max. distance of pixels for overlap dO 0.75 2.25 1.5 pixels
Max. angle for overlap θO 15 35 25 ◦

Figure 8. Evaluation of (a) only the tracking algorithm for the handpicked features and (b) a combination of the detection and tracking
algorithms. The colored segments of each bar show the different combinations of changes in shape (no change, growing, shrinking, and
branching) that are labeled by the black lines next to the bar. The missed tracks in panel (b) are separated into not detected or not tracked
features. Above the bars the percentage compared to all handpicked tracks is given for all types and for all types except branching, which is
given in brackets.

tures into the parts that both features share and a nonoverlap-
ping part to account for varying shapes in the nonoverlapping
part of detected and handpicked features. Then, we check
whether detected features correspond to the handpicked fea-
tures using the overlap as in Sect. 3.2. If for one of the
two handpicked features no corresponding detected feature is
found, this handpicked tracked feature is marked as a missed
tracked feature caused by the detection algorithm. Otherwise,
we test whether the tracking algorithm tracks the detected
features appropriately. In total, 54.1 % of the handpicked
matching pairs are detected and tracked correctly, whereas
21.6 % are not captured by the tracking algorithm, and for
24.4 % of the tracked features the corresponding features are
not detected. Interestingly, these fractions do not change sig-
nificantly if subsampled to individual types of change. Only
for the branching type of tracks, the rate of tracked features
missed by the tracking algorithm exceeds the one for the de-
tection algorithm, which is in line with the low number of
matching pairs captured by the tracking algorithm for this
type of change found in the evaluation of the tracking algo-
rithm alone.

Since not all handpicked tracked features are tracked auto-
matically by the presented algorithm, we need to make sure
that this does not change the temporal characteristics of the
automatically generated tracked features. In doing so, we
compare the distributions of lifetimes (Fig. 9) and growth
rates (Fig. 10) of the handpicked tracked features (hand-
picked), the automatically tracked features of the handpicked
features (only tracking), and the automatically tracked fea-
tures of the automatically detected features (tracking and de-
tection). At the beginning of the evaluation period, all fea-
tures are initialized with a lifetime in the class of 0 to 3 days,
for which the range of the class is given by the temporal res-
olution of the input data. For the following time steps, all
features that are marked as tracked features are assigned to
the next lifetime class compared to the class of their track-
ing partner in the previous time record. All other features are
initialized again in the lowest category of 0 to 3 days. For all
three different data sets, more than 99 % of features have a
lifetime smaller than 12 days, which can be thought of as the
average spin-up time needed by the tracking algorithm. In the
following, we consider only the period after those 12 days.
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Figure 9. Distribution of lifetime of all features in the first 12 RGPS snapshots in 2006 in the handpicked reference data (a, d), the automat-
ically tracked features of the handpicked features (b, e), and the automatically tracked features of the automatically detected features (c, f).
Panels (a–c) show the absolute number of features for a certain lifetime class, whereas panels (d–f) are normalized by the total number of
features for this time record.

Figure 10. Probability distribution function for growth rates in (a) the handpicked reference data, (b) the automatically tracked features of
the handpicked features, and (c) the automatically tracked features of the automatically detected features separated into growth for positive
growth rates and shrink for negative values.

The distribution of lifetimes for the handpicked tracks and
automatically generated tracks of handpicked features are
very similar: (1) the number of features in the lowest life-
time category increases in absolute and relative numbers to
the end of the evaluation period in an equal manner (70 % to
81 %, handpicked, and 67 % to 78 %, only tracking), (2) 17 %
(handpicked) and 18 % (only tracking) of the features have a
lifetime of 3 to 6 days, and (3) in both cases the remain-
ing 9 % of the features have a lifetime of over 6 days. In a
feature-by-feature comparison for both data sets, only 10 %
of the features vary in their lifetime due to uncertainties in

the tracking algorithm. The root-mean-square error of the
lifetime is estimated to be 1.55 days. For the automatically
detected and tracked features the average lifetime reduces to
3.9 days compared to 4.2 days for the handpicked features,
which is driven by an increase in the number of features in
the lifetime class 0 to 3 days to 81 %. The fractions of the
remaining classes are reduced accordingly but do not change
significantly relative to each other.

In addition to the lifetime as the main temporal character-
istic, we compute the growth rates of all tracked features to
check whether the shape of the tracked features changes in a
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similar manner. The growth rate is defined as the difference
of the number of pixels of the feature in the second record
compared to the feature of the previous record. In our analy-
sis, we divide the growth rate into two regimes depending on
its sign: growth of the feature for positive values and shrink-
ing of the feature for negative values. The distributions of the
growth rates for the handpicked, only tracking, and tracking
and detection data sets all have an exponential distribution
(Fig.10) with half of the features changing by less than 3 pix-
els per day. The high order of similarity of the distributions
indicates that the usage of the detection and tracking algo-
rithms does not distort the characteristics of tracked features,
even though the total number of features detected and tracked
increases by a factor of 2.3 for the detection and tracking data
set.

4.4 Discussion

The large time difference of 3 days between records of the
RGPS data set significantly complicates the tracking of de-
formation features because they change shape and positions
on shorter timescales. With this background, the overall per-
centage of 85.7 % of handpicked tracked features that were
correctly identified by the algorithm is more than satisfying.
The missed tracks and the false positives of the algorithm
lead to a lifetime RMSE of 1.55 days, which is smaller than
the uncertainty given by the 3-day temporal resolution of the
input deformation data. The low percentage of correctly iden-
tified branching features is also acceptable because they only
make up 10 % of all handpicked features. We hypothesize
that relaxing the constraints in the algorithm to also track
branching features will most likely lead to a strong increase
in false positives.

Also, the combination of tracking and detection algorithm
reproduces more than half of the handpicked tracks. This ex-
ceeds the 40 % of features that were fully detected by the
detection algorithm and might hint at a better performance
of the algorithm for long-lived features. The handpicking of
features and tracks by only one individual also leads to a bias
in the reference data. To accurately separate the uncertainty
caused by the subjectiveness of the reference data from the
uncertainty of the algorithm, more individuals would need to
repeat the handpicking procedure, which would exceed the
scope of this paper. Small LKFs and LKFs in regions of low
deformation, in particular, are harder to catch by eye (Linow
and Dierking, 2017), which explains that the automatic de-
tection picks 2.3 times more features than in the reference
and the number of tracked features increases by 65 %. We
assume that this bias towards small and therefore most prob-
ably short-lived features is responsible for the slightly higher
percentage of features in the class with the lowest lifetime
(0 to 3 days). In addition to this small increase, the distribu-
tions of lifetimes for the automatically detected and tracked
features are very similar, which suggests that there is no sig-
nificant cumulative bias caused by the application of both al-

gorithms. This is backed by the similar growth rates observed
for both data sets.

5 LKF data set

5.1 Generation of LKF data set

In this section, we introduce a data set of LKFs generated
by applying the detection and tracking algorithms to all
available RGPS data (Hutter et al., 2019). The RGPS data
cover the time from November 1996 to April 2008. Here,
we use the available winter data from late freezing season
(November–December) to the start of the melt onset (April–
May). The Lagrangian drift information that is also provided
in the RGPS data set is interpolated to the regular grid used
for the RGPS deformation data to be used as input in the LKF
tracking.

First, we apply the detection algorithm with the optimized
parameters given in Table 1 to all deformation data. The out-
put of the detection algorithm is a list of LKFs for each time
record that includes one array for each LKF. The array stores
the position (as an index in the RGPS grid and in latitude
and longitude coordinates) and deformation (divergence and
shear rate) information of all points of the LKF. Next, we
feed the interpolated drift information and the detected LKFs
of each year to the tracking algorithm and determine the link-
ages between LKFs for successive time records. The track-
ing algorithm with the optimized parameters given in Table 2
provides a list of tracked pairs. Each pair contains the indices
of the LKFs in records one and two.

Overall 164 698 LKFs were detected and 35 855 tracked
features were found. The yearly detection numbers range
from 11 002 LKFs for winter 2006/07, the year of a sea ice
minimum, to 16 774 LKFs in winter 2001/02. If the number
of detected features is normalized by the number of obser-
vations of sea ice deformation, we find the maximum to be
in winter 1996/97 and the minimum in 2002/03. The num-
ber of tracks varies from 2012 tracks in winter 2003/04 to
4127 tracks in winter 2001/02.

The deformation, more precisely the divergence rate,
which is saved for each LKF, can be used to distinguish leads
from pressure ridges in the generation of an LKF. In general,
leads form in divergent ice motion and pressure ridges in
convergent ice motion and the converse of this relation can
be used to label newly formed LKFs. Persistent LKFs can
also be labeled in this way, as long as the sign of divergence
does not change during the lifetime of an LKF. Consider an
LKF, initially labeled as a lead in divergence, that encounters
convergent motion. Depending on the magnitude of conver-
gence, the lead may either only partly close and continue to
be an open lead, or it may close completely and even evolve
into a pressure ridge, making differentiating between leads
and ridges difficult. Thus, we refrain from labeling all LKFs
in the data set into leads and pressure ridges but provide the
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deformation rates for each LKF and leave this classification
and its evaluation to the informed user. As an approximate
first guess, we estimate that 46 % of the LKFs in the data set
are leads, 41 % are pressure ridges, and 13 % are unclassified
(because the associated mean divergence rate along the LKF
changes sign over the lifetime of the LKF). For the classi-
fied leads and pressure ridges the sign of divergence does not
change over the lifetime. Please note that these estimates, es-
pecially for short LKFs, are likely contaminated with grid-
scale noise in the divergence data of RGPS (Lindsay and
Stern, 2003; Bouillon and Rampal, 2015). Combining the
LKF data set with sea ice thickness and concentration data
would allow us to clearly distinguish between leads and pres-
sure ridges by using these additional constraints: (1) along a
lead the sea ice concentration decreases within the time step,
and (2) along pressure ridges the sea ice thickness increases.

5.2 Applications and discussion

In this section, we present a few illustrative statistics of the
LKF data set. In doing so, we intend to demonstrate the use-
fulness of the data set but also to check it for consistency with
other studies on leads and sea ice deformation. The statistics
(Fig. 11) range from spatial properties such as LKF length,
LKF density, and intersection angles to temporal properties
such as LKF lifetimes. In the case of the intersection an-
gle, we give an example for a model–observation compari-
son with the presented algorithms by comparing the RGPS
LKF data set to LKFs that were detected and tracked in a
2 km model simulation with a numerical sea ice ocean model.
In addition, we link the number of deformation features and
their corresponding deformation rates to atmospheric drivers,
in particular to Arctic cyclones.

The density of LKFs is computed for the all years of the
LKF data set as the incidences when a pixel is crossed by
a LKF normalized by the overall number of RGPS observa-
tions for this pixel. In Fig. 11a only pixels that have more
than 500 RGPS observations are shown. We observe a fairly
homogeneous LKF density throughout the entire Amerasian
Basin, with a slight increase in the Beaufort Sea. The fast
ice regions in the East Siberian Sea have the lowest densi-
ties with the fast ice edge showing up as a sudden increase in
LKF density. The highest LKF densities are found around the
New Siberian Islands, Wrangel Island, and at the coastlines
along the Beaufort Sea. This agrees very well with studies
on lead densities derived from MODIS thermal-infrared im-
agery (Willmes and Heinemann, 2016) and CryoSat-2 data
(Wernecke and Kaleschke, 2015) that show high densities in
the Beaufort Sea and the highest values close to the coastline.
A direct comparison of density values is not possible as those
studies are limited to leads that are identified as an opening
in the ice cover, whereas our algorithm picks regions of high
deformation rates that can also include pressure ridges.

The distributions of LKF length of all single years are
very similar and range from ∼ 50 to 1000 km (Fig. 11c). For

LKF lengths between 100 and 1000 km, a stretched exponen-
tial, p(x)= Cxβ−1e−λx

β
with C = βλeλx

β
min (Clauset et al.,

2009), accurately describes the probability density function.
The parameters β = 0.719 and λ= 0.0531 are determined
by numerically finding the maximum likelihood estimate.
We perform a goodness-of-fit test for power-law-distributed
data that is based on the Kolmogorov–Smirnov (KS) statis-
tic, which is the maximum distance between the cumulative
distribution functions (CDFs) of two different distributions
(Clauset et al., 2009). We draw random samples from the
fitted distribution and compute the KS of the random sam-
ples and the fitted distribution. This simulation is repeated
1000 times. We find that the KS of the observed length scales
is smaller than the 95 % percentile of the random samples
and thereby the observed LKF lengths are described by the
fitted distribution. The stretched exponential distribution be-
longs to the family of heavy-tailed distributions and is the
transition of an exponential and a power-law distribution. It
describes many natural phenomena that are dominated by ex-
treme events but in contrast to a power-law distribution have
a natural upper limit scale (Laherrère and Sornette, 1998).
We limit the range of the fit to 1000 km due to the vary-
ing coverage and especially smaller gaps in the RGPS data
that might divide long features into multiple smaller seg-
ments. We set the lower bound to 100 km to account for the
discrete character of the LKF length that disturbs the dis-
tribution at lower LKF lengths. As LKFs here are collec-
tions of pixels, their length is set by a linear combination
of
(
i+
√

2j
)
· 12.5 km with i,j ∈ N.

The intersection angle between two deformation features
formed at a similar time is related to the rheology describ-
ing the deformation of sea ice. From satellite imagery in the
visible range for 14 days in 1991, the intersection angle was
found to range between 20 and 40◦ (Walter and Overland,
1993), which can be linked to the angle of internal friction
using a Mohr criterion for failure (Erlingsson, 1988). The
distribution of intersection angles of two LKFs that formed
in the same time record is given in Fig. 11d, in which only
LKFs larger than 10 pixels= 125 km are taken into account
to reduce the effect of a preferred direction (45 and 90◦) orig-
inating from the rectangular grid. We perform this analysis
on the RGPS LKF data set and LKFs that were detected in
a 2 km Arctic numerical model simulation, whose details are
given in Appendix A. For the RGPS data, we find that the
distribution peaks at an angle of 40–50◦. Angles larger than
50◦ occur more often than angles below 40◦, and angles be-
tween 0 and 20◦ have the lowest occurrence. The broad dis-
tribution indicates that there is not only one specific fractur-
ing angle but that heterogeneities in the ice cover and tem-
perature variations (Schulson, 2004) as well as the dilatancy
effect (Tremblay and Mysak, 1997) may influence the de-
formation on an Arctic-wide scale. The LKFs in the model
simulation intersect at larger angles with local maxima in the
range of 60 to 90◦. The difference in the sample size might
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Figure 11. Statistics on LKF data set: (a) LKF density computed for the all years of the data set. (b) Time series of the number of LKFs
separated by their deformation rates for winter 2002/03. The number of LKFs is normalized by the number of available pixels for each RGPS
time record. For early April no RGPS data are available. For each time record all cyclones (Serreze, 2009) over the Arctic ocean are each
shown as a dot in the upper panel. The y axis and the color code of the dots in the upper panel provide the local Laplacian of each cyclone as
a proxy for its strength. (c) PDF of LKF length along with stretched-exponential fit for LKFs larger than 100 km and smaller than 1000 km.
(d) Intersection angle of pairs of features that are newly formed (lifetime between 0 and 3 days) and have a size of at least 10 pixels for the
RGPS and a 2 km Arctic numerical model simulation. (e) Distribution of LKF lifetimes for all years along with a fit to an exponential tail.

cause these strong variations for larger angles, as we find 5
times fewer features in the model simulation than for RGPS
within the same period of time. In general, the model under-
estimates the probability of intersection angles smaller than
55◦ and overestimates those of angles larger than 55◦. We
attribute these differences to the usage of the elliptical yield
curve with normal flow rule in the simulation because this
yield curve does not have a “preferred” direction of fracture
in contrast to yield curves with a Mohr–Coulomb criterion.
The intersection angle may be improved by an appropriate
choice of model parameters (Ringeisen et al., 2018).

The distribution of lifetimes determined by the tracking
algorithm shows an exponential tail with a rate parameter
of 0.34 day−1 (Fig. 11e). Kwok (2001) described some LKF
systems that were persistent in the Arctic over a period of
a month for the winter of 1996/97. We also find lifetimes
as high as this but show that the majority of LKFs are ac-
tive in much shorter time intervals. We assume that the rapid
changes in external forcing (mainly wind stress) are the rea-
son for the high number of short-lived LKFs.

Last, we study the link between the detected features and
the wind forcing being the main driver of ice fracture. To
do so, we combine a data set of cyclones in the Northern
Hemisphere (Serreze, 2009) with the distribution of LKFs
in different deformation rate classes for, as an example, the
winter of 2002/03 (Fig. 11b). In the freezing season, we find
more deformation features (with generally higher deforma-
tion rates) caused by the thinner and therefore weaker ice
during this period. With thicker ice the number of deforma-
tion features decreases followed by an increase from April
onwards, which we attribute to the onset of melting and the
resulting weakening of the ice. This overall seasonal cycle is
interrupted by a set of four strong cyclones that pass through
the Arctic Ocean in March and lead to a sudden increase
in the number of deformation features. This confirms that
weather systems with high wind speeds are a main driver of
sea ice deformation in the Arctic Ocean. The deformation
rates associated with the LKFs co-vary with the seasonal cy-
cle of the number of LKFs, which is in agreement with the
seasonal cycle of the mean deformation rate (Stern and Lind-
say, 2009).
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6 Conclusions

The new detection algorithm presented in this study follows
the structure of the original algorithm (Linow and Dierking,
2017) with classifying LKF pixels in the input deformation
rates and then detecting single deformation features. In do-
ing so, an additional degree of abstraction is added compared
to studies using only skeletons of leads (Banfield, 1992;
Van Dyne and Tsatsoulis, 1993; Van Dyne et al., 1998). This
enables not only the extraction of feature-based informa-
tion such as intersection angles and LKF length but also the
tracking of the features. In addition, avoiding classified, that
is, preprocessed and charted, SAR imagery (Banfield, 1992;
Van Dyne and Tsatsoulis, 1993; Van Dyne et al., 1998) pro-
vides the opportunity to apply the algorithm to both model
output and satellite observations. For instance, Koldunov
et al. (2018) applies the algorithm directly to sea ice thick-
ness as an input field to study the impact of solver conver-
gence on the cumulative effect of deformation features. Still,
the algorithm can also be applied to classified imagery, if the
first filtering steps are skipped and the classified imagery is
used as the binary LKF map (like Fig. 1e).

The evaluation of the detected features shows that intro-
ducing a probability-based reconnection instance improves
both the number of correctly detected features and their qual-
ity. Here, the input of distance and differences in orientation
are the most important contributions if we consider the high
threshold for difference in deformation resulting from the pa-
rameter optimization. We only performed a brute-force opti-
mization of the parameters of the detection algorithm for a
small parameter space limited by the strong nonlinearity of
the detection itself and the small number of reference data.
For a thorough optimization a larger reference data set is re-
quired.

The design of a new tracking algorithm is outlined. The
tracking algorithm handles the dynamic nature of sea ice as
well as the low temporal resolution of satellite drift data. The
algorithm takes advection as well as growth and shrinking of
deformation features appropriately into account (86 % of the
handpicked tracks are found correctly). The algorithm recog-
nizes the opening of secondary leads (branching) at a lower
rate (56 %), but one needs to bear in mind the higher uncer-
tainty of those features in the handpicked data set and their
generally smaller number. The performance of the combina-
tion of detection and tracking algorithms is also satisfactory
and does not bias the statistics of the features. Roughly 20 %–
30 % of the detected features are tracked. Consequently, the
remaining 70 %–80 % of the features persist for less than
3 days. Sea ice deformation at higher sampling rates, for ex-
ample, derived from ship radar with a sampling rate of up to
10 min (Oikkonen et al., 2017), would be necessary to study
LKF lifetimes at these shorter timescales.

We split the task of finding a deformation feature and fol-
lowing it with time in a spatiotemporal deformation data
set into two subroutines: (1) detection features in the defor-

mation field of one time step and (2) finding the temporal
connection between individual detected features of subse-
quent time steps. In doing so, both subroutines are indepen-
dent of each other, although we speculate that information of
the temporal evolution of sea ice deformation could in turn
also improve the detection of features. For this task, machine
learning techniques, which have recently attracted attention
in the climate science context (see for instance Ashkezari
et al., 2006, for oceanic eddy detection), are a promising tool
to explore.

The LKF data set generated by automated LKF detec-
tion and tracking from the RGPS sea ice deformation data
includes ∼ 165000 LKFs from 12 winters. These are sig-
nificantly more deformation features than can be found in
previous handpicked lead data sets (e.g., Miles and Barry,
1998). Due to the use of drift observation derived from SAR-
imagery, the data set is also not limited to clear-sky condi-
tions. This object-based data set enables statistics of both the
overall LKF field, like LKF density, and of single LKFs, like
length, intersection, curvature, etc. In addition, all of these
statistics can be combined, linked, and used as filter crite-
ria. Along with the age estimated by the tracking algorithm,
the data set makes a comprehensive and quantitative descrip-
tion of deformation features in the Arctic Ocean possible and
complements qualitative studies (Kwok, 2001).

The algorithms are designed in a flexible way so that they
can be applied to any sea ice drift and deformation data, or
classified imagery. For example, the current RGPS LKF data
set could easily be extended until today with operational drift
data derived from Envisat and Sentinel-1 (Pedersen et al.,
2015). Also, resolved leads in high-resolution Arctic model
simulations can be analyzed to compare LKF properties to
the LKF data set. We have shown a first example of com-
paring intersection angles of LKFs. Comparing the charac-
teristics of deformation features directly makes a thorough
evaluation of lead-resolving sea ice models possible instead
of focusing on only one property such as lead density (Wang
et al., 2016) and also facilitates the complicated interpreta-
tion of scaling analysis of sea ice deformation that has been
used for this purpose so far (Rampal et al., 2016; Hutter et al.,
2018).

Code and data availability. The LKF data set de-
rived from RGPS data is available on PANGAEA:
https://doi.org/10.1594/PANGAEA.898114 (Hutter et al., 2019).
The code of the LKF detection and tracking algorithms is available
on GitHub: https://github.com/nhutter/lkf_tools.git (last access:
15 February 2019) (Hutter, 2019).
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Appendix A: Details of the Arctic simulation

The Arctic simulation with a refined horizontal grid spac-
ing of 2 km using MITgcm is based on a regional Arctic
configuration (Nguyen et al., 2012). The number of verti-
cal layers is reduced to 16 with the first five layers covering
the uppermost 120 m to reduce computational cost as we are
only interested in sea ice processes. The Refined Topogra-
phy data set 2 (RTopo-2) (Schaffer and Timmermann, 2016)
is used as bathymetry for the entire model domain. The lat-
eral boundary conditions are taken from globally optimized
ECCO2 simulations (Menemenlis et al., 2008). We use the
3-hourly Japanese 55-year Reanalysis (JRA-55) (Kobayashi
et al., 2015) with a spatial resolution of 0.5625◦ for surface
boundary conditions. The ocean temperature and salinity are
initialized on 1 January 1992 from the World Ocean Atlas
2005 (Locarnini et al., 2006; Antonov et al., 2006). The ini-
tial conditions for sea ice are taken from the Polar Science
Center (Zhang et al., 2003). Ocean and sea ice parameteriza-
tions and parameters are from Nguyen et al. (2011) with the
ice strength P ? = 2.264×104 N m−2. The momentum equa-
tions are solved using an iterative method and line successive
relaxation of the linearized equations following Zhang and
Hibler (1997). In each time step (120 s), 10 nonlinear steps
are made and the linear problem is iterated until an accuracy
of 10−5 is reached or 500 iterations are performed.
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