Articles | Volume 13, issue 8
Research article
01 Aug 2019
Research article |  | 01 Aug 2019

Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis

Jing Tao, Randal D. Koster, Rolf H. Reichle, Barton A. Forman, Yuan Xue, Richard H. Chen, and Mahta Moghaddam

Related authors

Improved ELMv1-ECA simulations of zero-curtain periods and cold-season CH4 and CO2 emissions at Alaskan Arctic tundra sites
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307,,, 2021
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
The temperature-dependent shear strength of ice-filled joints in rock mass considering the effect of joint roughness, opening and shear rates
Shibing Huang, Haowei Cai, Zekun Xin, and Gang Liu
The Cryosphere, 17, 1205–1223,,, 2023
Short summary
Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada
Yifeng Wang, Robert G. Way, Jordan Beer, Anika Forget, Rosamond Tutton, and Meredith C. Purcell
The Cryosphere, 17, 63–78,,, 2023
Short summary
Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040,,, 2022
Short summary
Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere, 16, 2701–2708,,, 2022
Short summary
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 2: An upscaling strategy of geophysical measurements to the catchment scale at two study sites
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615,,, 2022
Short summary

Cited articles

Alexeev, V. A., Nicolsky, D. J., Romanovsky, V. E., and Lawrence, D. M.: An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost, Geophys. Res. Lett., 34, L09502,, 2007. 
Anisimov, O. A. and Reneva, S.: Permafrost and changing climate: The Russian perspective, Ambio, 35, 169–175,[169:Pacctr]2.0.Co;2, 2006. 
Anisimov, O. A.: Potential feedback of thawing permafrost to the global climate system through methane emission, Environ. Res. Lett., 2, 045016,, 2007. 
Anisimov, O. A., Lobanov, V. A., Reneva, S. A., Shiklomanov, N. I., Zhang, T., and Nelson, F. E.: Uncertainties in gridded air temperature fields and effects on predictive active layer modeling, J. Geophys. Res.-Earth, 112, F02S14,, 2007. 
Barman, R. and Jain, A. K.: Comparison of effects of cold-region soil/snow processes and the uncertainties from model forcing data on permafrost physical characteristics, J. Adv. Model. Earth Sy., 8, 453–466, 2016. 
Short summary
The active layer thickness (ALT) in middle-to-high northern latitudes from 1980 to 2017 was produced at 81 km2 resolution by a global land surface model (NASA's CLSM) with forcing fields from a reanalysis data set, MERRA-2. The simulated permafrost distribution and ALTs agree reasonably well with an observation-based map and in situ measurements, respectively. The accumulated above-freezing air temperature and maximum snow water equivalent explain most of the year-to-year variability of ALT.