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Abstract. This study introduces and evaluates a comprehen-
sive, model-generated dataset of Northern Hemisphere per-
mafrost conditions at 81 km2 resolution. Surface meteorolog-
ical forcing fields from the Modern-Era Retrospective Anal-
ysis for Research and Applications 2 (MERRA-2) reanalysis
were used to drive an improved version of the land compo-
nent of MERRA-2 in middle-to-high northern latitudes from
1980 to 2017. The resulting simulated permafrost distribu-
tion across the Northern Hemisphere mostly captures the ob-
served extent of continuous and discontinuous permafrost but
misses the ecosystem-protected permafrost zones in west-
ern Siberia. Noticeable discrepancies also appear along the
southern edge of the permafrost regions where sporadic and
isolated permafrost types dominate. The evaluation of the
simulated active layer thickness (ALT) against remote sens-
ing retrievals and in situ measurements demonstrates reason-
able skill except in Mongolia. The RMSE (bias) of climato-
logical ALT is 1.22 m (−0.48 m) across all sites and 0.33 m
(−0.04 m) without the Mongolia sites. In northern Alaska,
both ALT retrievals from airborne remote sensing for 2015
and the corresponding simulated ALT exhibit limited skill
versus in situ measurements at the model scale. In addition,
the simulated ALT has larger spatial variability than the re-
motely sensed ALT, although it agrees well with the retrievals
when considering measurement uncertainty. Controls on the
spatial variability of ALT are examined with idealized nu-

merical experiments focusing on northern Alaska; meteoro-
logical forcing and soil types are found to have dominant
impacts on the spatial variability of ALT, with vegetation
also playing a role through its modulation of snow accu-
mulation. A correlation analysis further reveals that accumu-
lated above-freezing air temperature and maximum snow wa-
ter equivalent explain most of the year-to-year variability of
ALT nearly everywhere over the model-simulated permafrost
regions.

1 Introduction

Permafrost is an important component of the climate system,
and its variations can have significant impacts on climate and
society. Of deep concern is a potential positive feedback loop
by which carbon stored within permafrost regions is released
through global warming, thereby adding greenhouse gases
to the atmosphere that accelerate the warming further (Dor-
repaal et al., 2009; Schuur et al., 2009; MacDougall et al.,
2012; Schuur et al., 2015). Communities and infrastructure
in ice-rich permafrost regions are particularly vulnerable to
land subsidence and infrastructure damage caused by per-
mafrost thaw (Nelson et al., 2001; Liu et al., 2010; Guo and
Sun, 2015).
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Permafrost variations, including pronounced permafrost
degradation due to a warming climate, have been reported
for many regions, including Alaska (Nicholas and Hinkel,
1996; Osterkamp and Romanovsky, 1996; Jorgenson et al.,
2001; Hinkel and Nelson, 2003; Jafarov et al., 2012; Liu
et al., 2012; Jones et al., 2016; Batir et al., 2017), Canada
(Chen et al., 2003; James et al., 2013), Norway (Gisnas et
al., 2013), Sweden (Pannetier and Frampton, 2016), Russia
(Romanovsky et al., 2007, 2010), Mongolia (Sharkhuu and
Sharkhuu, 2012), and the Qinghai–Tibet Plateau (Zhou et al.,
2013; Wang et al., 2016a; Lu et al., 2017; Ran et al., 2018).
For the entire Northern Hemisphere, rapidly accelerated per-
mafrost degradation in recent years has been reported by Luo
et al. (2016) based on in situ measurements at a point scale
or a spatially aggregated scale (up to 1000 m× 1000 m) from
the Circumpolar Active Layer Monitoring (CALM) network.
However, the current state and evolution of global permafrost
(including permafrost temperature, ice content, and degrada-
tion rates) are still largely unknown across much of the north-
ern latitudes.

The impact of a changing climate on permafrost dynam-
ics must depend on local site characteristics. Subsurface heat
transfer processes and active layer thickness (ALT; the max-
imum thaw depth at the end of the thawing season) are in-
fluenced by more than surface meteorological forcing – they
are also influenced by vegetation type, surface organic layer
characteristics, soil properties, and soil moisture (Stieglitz et
al., 2003; Shur and Jorgenson, 2007; Yi et al., 2007, 2015;
Luetschg et al., 2008; Dankers et al., 2011; Johnson et al.,
2013; Jean and Payette, 2014; Fisher et al., 2016; Matyshak
et al., 2017; Tao et al., 2017). Understanding the contribu-
tions from the different controls on ALT (and permafrost
conditions in general) is crucial for assessing permafrost be-
haviour and its resilience to a warming climate.

Physically based numerical model simulations are poten-
tially useful for quantifying and understanding these dynam-
ics at large spatial scales; they can also provide insights
into associated impacts on the global carbon cycle. Per-
mafrost dynamics can be modelled, for example, by driv-
ing a land surface model (LSM) offline (i.e. uncoupled from
an atmospheric model) with meteorological forcing data (in-
cluding air temperature, radiation, and precipitation) from
some credible source. LSMs that have been used to quantify
large-scale permafrost patterns (i.e. distributions and ther-
mal states) and their interactions with a warming climate in-
clude, for example, the Joint UK Land Environment Sim-
ulator (JULES, Dankers et al., 2011), the Organizing Car-
bon and Hydrology in Dynamic Ecosystems (ORCHIDEE)
– aMeliorated Interactions between Carbon and Temperature
(ORCHIDEE-MICT, Guimberteau et al., 2018), the Catch-
ment Land Surface Model (CLSM, Tao et al., 2017), and
the Community Land Model (CLM; Alexeev et al., 2007;
Nicolsky et al., 2007; Yi et al., 2007; Lawrence and Slater,
2008; Lawrence et al., 2008, 2012; Koven et al., 2013; Chad-
burn et al., 2017; Guo and Wang, 2017). Most of these land

models were run at coarse spatial resolutions, e.g. ranging
from 0.5◦× 0.5◦ to 1.8◦× 3.6◦ for LSMs participating in the
Permafrost Carbon Network (PCN) (Wang et al., 2016a) and
from 0.188◦× 0.188◦ to 4.10◦× 5◦ for the models participat-
ing in the Coupled Model Intercomparison Project Phase 5
(CMIP5) (Koven et al., 2013).

Differences in the permafrost behaviour simulated with
these models reflect model-specific process representations
as well as biases associated with different meteorological
forcing datasets (Barman and Jain, 2016; Wang et al., 2016a,
b; Guo et al., 2017; Guimberteau et al., 2018). Such forcing
biases are difficult to avoid given the sparsity of direct ob-
servations of meteorological variables in most parts of the
high latitudes. Even reanalyses, which assimilate a variety of
global observations, inevitably have biases in high latitudes
due to observation sparsity in cold regions combined with
the many challenges of physical process modelling. Never-
theless, despite these issues, permafrost behaviour simulated
with LSMs driven offline by reanalysis forcing fields can still
be useful for understanding the impacts of climate variabil-
ity on permafrost. The present paper utilizes this approach.
Specifically, we generate here a dataset of Northern Hemi-
sphere permafrost conditions by driving an updated version
of NASA’s Catchment Land Surface Model with Modern-
Era Retrospective Analysis for Research and Applications 2
(MERRA-2; Gelaro et al., 2017) surface meteorological forc-
ing fields for the middle-to-high latitudes across the Northern
Hemisphere over the period 1980–2017. We perform the sim-
ulations at 81 km2 resolution encompassing permafrost areas
in the middle-to-high latitudes of the Northern Hemisphere.
This resolution is high relative to most existing modelling
studies at the global scale; published simulations at higher
resolution are limited to plot scales (e.g. CALM site scale
in Shiklomanov et al., 2010), landscape scales (e.g. polygo-
nal tundra landscape scale in Kumar et al., 2016), or regional
scales (e.g. 4 km2 in Jafarov et al., 2012, covering Alaska;
1 km2 in Gisnas et al., 2013, covering Norway).

Due to the sparsity of in situ measurements at the regional
to global scale, evaluating the spatial pattern of ALT pro-
duced by any such simulation remains challenging. Indeed,
it is difficult to compare the simulated values at model res-
olutions with in situ observations taken at the point scale
unless the measurement point is uniformly representative of
the area covered by the model grid cell or the representa-
tion errors associated with the point-to-grid comparison are
well defined. Remotely sensed permafrost products, which
provide a unique source of spatially distributed ALT at the
landscape scale, may provide help in this regard. Existing re-
mote sensing ALT products have been retrieved from ground-
based ground-penetrating radar (GPR) (A. Chen et al., 2016;
Jafarov et al., 2017), airborne polarimetric synthetic aperture
radar (SAR), and spaceborne interferometric SAR (Liu et al.,
2012; Li et al., 2015; Schaefer et al., 2015). These ALT prod-
ucts are available at the landscape scale and can complement
our modelling analysis. In this study, we use remote sensing
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information from the NASA Airborne Microwave Observa-
tory of Subcanopy and Subsurface (AirMOSS) mission. In
2015, AirMOSS acquired P-band (420–440 MHz) SAR ob-
servations over portions of northern Alaska from which Chen
et al. (2019) retrieved regional estimates of ALT and soil
layer dielectric properties that are related to soil moisture and
freeze–thaw states. In their study, Chen et al. (2019) mainly
focus on the development and improvement of the ALT re-
trieval algorithm, whereas the present study uses the ALT
retrievals in combination with in situ measurements to aid in
assessing the (fully independent) ALT simulations.

In the present paper, we evaluate our simulated permafrost
extent and ALTs against an observation-based permafrost
distribution map and against multi-year in situ observations.
We also compare the skill of our model estimates to that of
the AirMOSS ALT retrievals. In these comparisons, we ac-
count for uncertainty to the extent possible. Overall, we pur-
sue three scientific objectives: (1) evaluate the relative im-
portance of the factors that determine the spatial variability
of ALT, (2) evaluate CLSM-simulated ALT and permafrost
extent against observations, and (3) quantify and assess the
large-scale characteristics of ALT (in terms of means and in-
terannual variability) in Northern Hemisphere permafrost re-
gions from 1980 through 2017. As a side benefit, the side-
by-side comparison of modelled and remotely sensed ALT
estimates is an important first step toward combining this
information effectively in future model–data fusion efforts.
Section 2 below describes the model and datasets used in this
study, Sect. 3 describes methods, and Sect. 4 provides results.
Our findings are summarized and discussed in Sect. 5.

2 Model and datasets

2.1 NASA Catchment Land Surface Model (CLSM)

CLSM is the land model component of NASA’s Goddard
Earth Observing System (GEOS) Earth system model and
was part of the model configuration underlying the MERRA-
2 reanalysis product (Reichle et al., 2017a; Gelaro et al.,
2017). CLSM explicitly accounts for sub-grid heterogene-
ity in soil moisture characteristics with a statistical approach
(Koster et al., 2000; Ducharne et al., 2000). The land fraction
within each computational unit (or grid cell) is partitioned
into three soil moisture regimes, namely the wilting (i.e. non-
transpiring), unsaturated, and saturated area fractions. Over
each of the three moisture regimes, a distinct parameteri-
zation is applied to estimate the relevant physical processes
(e.g. runoff and evapotranspiration). This version of CLSM
includes a three-layer snow model that estimates the evolu-
tion of snow water equivalent (SWE), snow depth, and snow
heat content (Stieglitz et al., 2001) in response to the forcing
data. The snow model accounts for key physical mechanisms
that contribute to the growth and ablation of the snowpack,
including snow accumulation, ageing, melting, and refreez-

ing. The model also includes the insulation of the ground
from the atmosphere by the snowpack. The CLSM subsur-
face heat transfer module uses an explicit finite difference
scheme to solve the heat diffusion equation for six soil layers
(0–0.1, 0.1–0.3, 0.3–0.7, 0.7–1.4, 1.4–3, and 3–13 m). The
soil layer thicknesses increase with depth following a geo-
metric series for consistency with the linear heat diffusion
calculation (Koster et al., 2000). A no-heat-flux condition is
employed at 13 m depth.

The updated version of CLSM used here includes mod-
ifications aimed at improving permafrost simulation. It ac-
counts, for example, for the impact of soil carbon on the soil
thermal properties with soil porosity, thermal conductivity,
and specific heat capacity calculated separately for mineral
soil and soil carbon, after which the two are averaged using
a carbon-weighting scheme. Higher (lower) soil carbon con-
tent, therefore, results in lower (higher) soil thermal conduc-
tivity. The updated version produces more realistic subsur-
face thermodynamics in cold regions than does the original
scheme (Tao et al., 2017). This version of CLSM, however,
does not include dynamic soil carbon pools.

Particularly relevant to the present analysis is our calcu-
lation of ALT from CLSM simulation output. We compute
ALT from the simulated soil temperature profile and the
ice content within the soil layer that contains the thawed-
to-frozen transition. Precisely, the thawed-to-frozen depth is
calculated as

zbottom(l)− fice(l, t)×1z(l), (1)

where layer l is the deepest layer that is fully or partially
thawed, zbottom(l) represents the depth at the bottom of layer
l, fice(l, t) is the fraction of ice in layer l at time t (i.e.
fice(l, t) ∈ [0 1]), and 1z(l) is the thickness of layer l. To
identify layer l, we use a 0 ◦C degree temperature thresh-
old. Specifically, T > 0 ◦C degree indicates that a layer is
fully thawed, T = 0 ◦C degree indicates that a layer is par-
tially thawed, and T < 0 ◦C degree indicates that a layer is
fully frozen. That is, layer l is the deepest layer that satisfies
T (l) ≥ 0 ◦C. Equation (1) then expresses that the thawed-to-
frozen depth is equal to the bottom depth of the layer l but
adjusted upward according to the ice fraction within the par-
tially thawed layer l. This upward adjustment, by the way, al-
lows the thawed-to-frozen depth to be a continuous variable;
it is not quantized to the imposed layer depths. We search
for the deepest l if multiple thawed-to-frozen transitions are
present (e.g. if a seasonal frost at the surface is separated
from the permafrost below by a thawed soil layer). The an-
nual ALT for a given year, then, is defined as the deepest
depth at which a thawed-to-frozen transition occurs within
that year. Note that the calculation of Eq. (1) is made at the
scale of a model grid cell, and thus features such as talik are
not represented if they occur at sub-grid cell scale.

We drive the improved CLSM version of Tao et al. (2017)
in a land-only (offline) configuration across permafrost ar-
eas in the Northern Hemisphere. The simulation domain,
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Figure 1. (a) Elevation above mean sea level in the simulation domain, which is defined by the area for which NCSCDv2 data are available.
Regions A, B, C, and D are discussed in the text. (b) Permafrost and ground ice conditions adapted from Brown et al. (2002). Red dots
represent CALM sites.

shown in Fig. 1a, covers the major permafrost regions of
the Northern Hemisphere middle-to-high latitudes for which
soil carbon data are available from the Northern Circum-
polar Soil Carbon Database version 2 (NCSCDv2, https:
//bolin.su.se/data/ncscd/, last access: 17 July 2017) (Hugelius
et al., 2013a, b). The NCSCDv2 data are used to calculate the
CLSM soil thermal properties used in the simulations (Tao
et al., 2017). The model simulation covered the period from
1980 to 2017 and was performed at an 81 km2 spatial reso-
lution on the 9 km Equal-Area Scalable Earth grid, version 2
(Brodzik et al., 2012).

Surface meteorological forcings were extracted from the
MERRA-2 reanalysis data, which are provided at a reso-
lution of 0.5◦ latitude× 0.625◦ longitude (Global Model-
ing and Assimilation Office, GMAO, 2015a, b). At latitudes
south of 62.5◦ N within our simulation domain, the MERRA-
2 precipitation forcing used here is informed by gauge mea-
surements from the daily 0.5◦ global Climate Prediction Cen-
ter Unified gauge product (Chen et al., 2008) as described
in Reichle et al. (2017b). We further rescaled the precipita-
tion to the long-term, seasonally varying climatology of the
Global Precipitation Climatology Project version 2.2 prod-
uct (Huffman et al., 2009). Further details regarding model
parameters and forcing inputs are found in Tao et al. (2017).

The model was spun up for 180 years by looping five
successive times through the 36-year period of MERRA-2
forcing from 1 January 1980 to 1 January 2016 in order to
achieve a quasi-equilibrium state. The spatial terrestrial state
variables at the end of the fifth loop were used to initialize
the model for the final simulation experiment from 1980 to
2017.

2.2 Remotely sensed ALT from AirMOSS

Radar backscatter measurements are sensitive to changes in
the soil dielectric constant (or relative permittivity) which
in turn are associated with changes in soil moisture and
the soil freeze–thaw state. Based on this relationship, Chen
et al. (2019) used the AirMOSS airborne P-band (420–
440 MHz) synthetic aperture radar (SAR) observations col-
lected during two campaigns in 2015 to estimate ALT in
northern Alaska. As shown in Fig. 2a, the AirMOSS flights
originated from Fairbanks International Airport and headed
west toward the Seward Peninsula (HUS, KYK, COC), and
then they turned back east (KGR) prior to heading north
towards the Arctic coast overpassing Ambler (AMB), Iv-
otuk (IVO), and Atqasuk (ATQ). From there, the flights
turned south again, flying over Barrow (BRW, also known as
Utqiaġvik), Deadhorse (DHO), and Coldfoot (CFT) en route
to Fairbanks. In the present paper, the remotely sensed ALT
retrievals are compared with in situ observations and CLSM-
simulated ALT.

Chen et al. (2019) used AirMOSS P-band SAR observa-
tions at two different times to retrieve active layer proper-
ties: (1) acquisitions on 29 August 2015 when the downward
thawing process approximately reached its deepest depth (i.e.
the bottom of the active layer) and (2) acquisitions on 1 Oc-
tober 2015 when the active layer started to refreeze from the
surface while the bottom of the active layer remained thawed.
ALT was assumed constant from late August to early October
because over this period changes in thawing depth are found
typically negligible (Carey and Woo, 2005; R. H. Chen et
al., 2016; Zona et al., 2016). Strictly speaking, the radar re-
trievals represent the approximate thaw depth of the thawed-
to-frozen boundary on 29 August 2015 and 1 October 2015.
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Figure 2. (a) Ten transects of AirMOSS flights conducted in Alaska on 29 August 2015 and 1 October 2015, including HUS (Huslia), KYK
(Koyuk), COC (Council), KGR (Kougarok), AMB (Ambler), IVO (Ivotuk), ATQ (Atqasuk), BRW (Barrow), DHO (Deadhorse), and CFT
(Coldfoot). Each flight swath width is approximately 15 km. The red dot on IVO illustrates the location of the representative grid cell used
and discussed in Sect. 3.2. Background map was adapted from © Google Maps. (b) Vegetation class, (c) soil organic carbon content, and
(d) soil class used in CLSM. The eight vegetation classes are (1) broadleaf evergreen trees, (2) broadleaf deciduous trees, (3) needleleaf trees,
(4) grassland, (5) broadleaf shrubs, (6) dwarf trees, (7) bare soil, and (8) desert soil. The 253 soil classes include one peat class (no. 253),
which is shown in dark grey, and 252 mineral soil classes (De Lannoy et al., 2014).

The unknown, true ALT for 2015 might occur later if the
thawing continued and the maximum thaw depth occurred
after the October flight time. Based on an analysis of in situ
observations (not shown), however, it is rare that this occurs,
and the subsequent impact on the estimated ALT value would
be relatively small in any case. We, therefore, equate the re-
trieved thaw depth with ALT.

In the retrieval algorithm, Chen et al. (2019) used a three-
layer dielectric structure to represent the active layer and un-
derlying permafrost. In their algorithm, the two uppermost
layers together constitute the active layer that accounts for
a top, unsaturated zone and an underlying, saturated zone.
The bottommost (third) layer of the retrieval model struc-
ture represents the permafrost. Because the soil moisture at
saturation only depends on the porosity of the soil medium,
the dielectric constant of the saturated zone in the active
layer is assumed constant over the time window. An itera-
tive forward-model inversion scheme was used to simultane-
ously retrieve the dielectric constants and layer thicknesses
of the three-layer dielectric structure from the SAR obser-
vations collected on 29 August 2015 and 1 October 2015.
Note that the retrieved ALT cannot exceed the radar sens-
ing depth of about 60 cm. This is the depth below which the
AirMOSS radar is expected to lose sensitivity to subsurface
features, and it is calculated based on the radar system noise
floor and calibration accuracy. Therefore, any retrieved ALT
larger than 60 cm is expected to have large uncertainties, and
the error is further expected to grow linearly as the retrieved

values of ALT essentially saturate. This limitation may also
lead to underestimates of the actual thaw depth.

In this study, we focus on the retrievals of four flight lines
across the Alaska North Slope, including IVO (Ivotuk), ATQ
(Atqasuk), BRW (Barrow), and DHO (Deadhorse) as shown
in Fig. 2a. These four transects cover areas with light to mod-
erate vegetation. Since the radar scattering model is only ap-
plicable to bare surfaces or lightly vegetated tundra areas
(Chen et al., 2019), the ALT estimates derived for IVO, ATQ,
BRW, and DHO are considered more accurate than ALT re-
trievals for the remaining transects, which include more veg-
etated areas. Moreover, some of the southern transects cover
discontinuous permafrost where the ALT often exceeds the
P-band radar sensing depth of about 60 cm, and thus the re-
trievals have large uncertainty (Chen et al., 2019).

2.3 Circum-Arctic permafrost conditions and in situ
observations of ALT

The permafrost distribution simulated by CLSM is evalu-
ated against the observation-based Circum-Arctic Map of
Permafrost and Ground-Ice Conditions (Brown et al., 2002)
shown in Fig. 1b. The map is based on the distribution
and character of permafrost and ground ice using a phys-
iographic approach. Permafrost conditions are categorized
into four classes: continuous (90 %–100 %), discontinuous
(50 %–90 %), sporadic (10 %–50 %), and isolated (0 %–
10 %), where the numbers in parentheses indicate the area
fraction of permafrost extent.

www.the-cryosphere.net/13/2087/2019/ The Cryosphere, 13, 2087–2110, 2019
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In situ observations of ALT obtained by the CALM net-
work (https://www2.gwu.edu/~calm/, last access: 18 March
2019; Brown et al., 2000) were used to evaluate both the
AirMOSS ALT retrievals and CLSM-simulated ALT results.
The CALM network provides observations from 1990 to
2017, but few sites have records in the early 1990s. We did
not use measurements that were flagged as having been taken
too early in the season or under unusual conditions (e.g. after
the site was burned or covered with lava, which occurred at
sites R30A and R30B in Kamchatka). In total, there are 220
sites located within the CLSM simulation domain (Fig. 1b),
and we use 213 sites to evaluate results. Thaw depth mea-
surements are usually made at the end of the thawing season.
Most of the CALM sites (129 out of the 213 sites used here)
employ a spatially distributed mechanical probing method to
measure thaw depths along a transect or across a rectangular
grid ranging in size from 10 m× 10 m to 1000 m× 1000 m.
At 20 sites, thaw tubes or boreholes are used to measure the
thaw depth. At 63 sites, ground temperature measurements
from boreholes are used to infer thaw depth. For the remain-
ing site, no information about the measurement method is
available. Only point-scale measurements are available from
the thaw tube/borehole and ground temperature sites (includ-
ing the sites in Mongolia).

In addition, daily in situ observations of soil tempera-
ture profiles at 10 Alaskan sites from the Permafrost Lab-
oratory at the University of Alaska Fairbanks (UAF) (http:
//permafrost.gi.alaska.edu/sites_map, last access: 17 August
2018; Romanovsky et al., 2009) were used to infer thawed-
to-frozen depth using the 0 ◦C degree threshold and to com-
plement the CALM ALT observations in Alaska. Table 1 pro-
vides the coordinates and measuring methods of the UAF in
situ sites. The UAF measurements were used along with the
CALM data to evaluate the ALT estimates derived from the
CLSM simulation and the AirMOSS radar observations for
the North Slope of Alaska in Sect. 4.1.

3 Methods

3.1 Comparing ALT from in situ observations,
AirMOSS retrievals, and CLSM results in Alaska

First, we compare AirMOSS radar retrievals and CLSM sim-
ulation results of ALT for 2015 against each other and against
in situ observations: (i) we compare the spatial patterns of the
AirMOSS retrievals with those of the model-simulated ALT
over northern Alaska and (ii) we evaluate the simulated ALT
against both the AirMOSS retrievals and in situ observations
from the CALM and UAF networks. We rely on several met-
rics to evaluate the model and radar-retrieval performance,
including bias, root mean square error (RMSE), and correla-
tion coefficient (R). The results are discussed in Sect. 4.1.

We conducted the intercomparison at the model scale. The
radar retrievals were provided at 2 arcsec× 2 arcsec (roughly
20 m× 60 m in the Arctic) resolution, whereas the CLSM-
simulated ALTs are at 81 km2. We thus aggregated the Air-
MOSS retrievals to the CLSM model grid by averaging
all the retrieval data points within each 81 km2 model grid
cell. Only model grid cells that were at least 30 % covered
by radar retrievals were used in the comparison. The Air-
MOSS transects cover several different regions with different
climatologic regimes, topography, vegetation, and soil type
(Fig. 2). Note that although the vegetation class used in the
model (Fig. 2b) suggests the presence of dwarf trees over the
Alaska North Slope, the actual satellite-based leaf area index
(LAI), vegetation height, greenness fraction, and albedo will
still instruct the model that the tree cover there is extremely
sparse. The data sources for these vegetation-related bound-
ary conditions can be found in Table 1 of Tao et al. (2017).
Overall, the variability of ALT along these transects encom-
passes the influence of a variety of factors at the regional
scale.

The daily UAF in situ soil temperature profile observations
on the AirMOSS flight date (29 August 2015) were used
to calculate the thawed-to-frozen depth (i.e. approximated
ALT). The ALT measurements at all of the 13 CALM sites
covered by the AirMOSS transects were obtained in August
of 2015 (Table 1). Among them, eight CALM sites obtained
ALT measurements slightly earlier than the overflight date
(within at most 18 d from 29 August 2015). Nevertheless,
we assume that these earlier measurements still represent the
thaw depth at the end of August reasonably well. Prior to
comparison with the model results and the aggregated radar
retrievals, the distributed measurements for a given CALM
site (see sampling methods in Table 1) were averaged into
a single value. If multiple CALM or UAF sites lay within a
single CLSM grid cell, a single spatially averaged observed
value was computed for the cell.

We employed the strategy of Schaefer et al. (2015) to han-
dle the uncertainty propagation, i.e. adding in quadrature the
uncertainty components from each scale/level involved (see
Supplement for a detailed description). For AirMOSS re-
trievals, the sampling uncertainty of mean ALT at the 81 km2

model grid-cell scale is negligible given the large sampling
size and the fact that the retrieval uncertainty dominates the
overall uncertainty (see Supplement). Here, we use a nomi-
nal estimate of 0.15 m to represent the AirMOSS uncertainty
(i.e. the average of the lower and upper bound of the actual
retrieval uncertainty for individual radar pixels as discussed
by Chen et al., 2019).

When comparing in situ measurements with model results
at the 81 km2 scale (i.e. a point-to-grid comparison), the ul-
timate measurement uncertainty propagated from the point-
scale measurements to the 81 km2 scale is, for all intents and
purposes, unknown due to a lack of sufficient measurements
over the 81 km2 scale to compute upscaling errors (see Sup-
plement). We thus show instead the standard deviation of
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Table 1. In situ permafrost measurement sites covered by the AirMOSS transects in 2015.

AirMOSS flight (official Permafrost site (CALM Latitude Longitude Sampling Measurement date
full name) or UAF)a (◦) (◦) methodb (M/DD/YYYY)

COC (Council) U27 (CALM) 64.8333 −163.7000 4 8/30/2015
U28 (CALM) 65.4500 −164.6167 4 8/29/2015

IVO (Ivotuk) IV4 (UAF) 68.4803 −155.7437 1c 8/29/2015
ATQ (Atqasuk) U3 (CALM) 70.4500 −157.4000 4 8/25/2015
BRW (Barrow) U1 (CALM) 71.3167 −156.6000 4 8/21/2015

U2 (CALM) 71.3167 −156.5833 2 8/24/2015
BR2 (UAF) 71.3090 −156.6615 1 8/29/2015

DHO (Deadhorse) U4 (CALM) 70.3667 −148.5500 3 8/25/2015
U5 (CALM) 70.3667 −148.5667 4 8/11/2015
U6 (CALM) 70.1667 −148.4667 3 8/26/2015
U31 (CALM) 69.6969 −148.6821 3 8/15/2015
U8 (CALM) 69.6833 −148.7167 3 8/27/2015
U32A (CALM) 69.4410 −148.6703 3 8/16/2015
U32B (CALM) 69.4010 −148.8056 3 8/16/2015
U9A (CALM) 69.1667 −148.8333 3 8/25/2015
WD1 and WDN (UAF) 70.3745 −148.5522 1 8/29/2015
DH2 (UAF) 70.1613 −148.4653 1 8/29/2015
FB1 (UAF) 69.6739 −148.7219 1 8/29/2015
FBD (UAF) 69.6741 −148.7208 1d 8/29/2015
FBW (UAF) 69.6746 −148.7196 1 8/29/2015
SG1 (UAF) 69.4330 −148.6738 1 8/29/2015
SG2 (UAF) 69.4283 −148.7001 1 8/29/2015
HV1 (UAF) 69.1466 −148.8483 1d 8/29/2015

a CALM: sites from the Circumpolar Active Layer Monitoring (CALM) network; UAF: sites from the Permafrost Laboratory at the University of
Alaska Fairbanks. b Sampling method: (1) single point; (2) 320 random sampling points within a 10 m× 10m area; (3) 100 m× 100 m grid with a
10 m sampling interval; (4) 1000 m× 1000 m grid with a 100 m sampling interval. c Two sensors are installed at IV4. d Observations were taken from
two conditions, including a frost-boil and an inter-boil area.

CALM measurements to illustrate, in a highly approximate
way, the spatial representativeness error of the in situ mea-
surements – a small (large) standard deviation represents a
homogeneous (heterogeneous) area in terms of ALT, mean-
ing that the in situ mean likely can (cannot) represent an aver-
age over a larger scale, assuming the site-scale heterogeneity
is somewhat transferable to the larger scale. Such transfer-
ability might only apply to the largest in situ site scales (e.g.
1000 m× 1000 m) to the model grid scale (81 km2) and is
thus, in general, questionable. We thus make no claim here
that the standard deviations shown represent true uncertainty
levels.

3.2 Idealized experiments

After comparing the spatial patterns of the AirMOSS re-
trievals with the CLSM-simulated ALT results, we then in-
vestigate the factors that affect the spatial variability of ALT
through a series of idealized experiments. Specifically, we re-
peated the simulation along the AirMOSS transects multiple
times, each time removing the spatial variation in some as-
pect of the model forcing or parameters and then quantifying
the resulting impact on ALT variability.

For these supplemental simulations, we first identified a
grid cell within the IVO transect (shown in Fig. 2a) that
represents roughly average (typical) conditions across the
10 different transects. In the first idealized experiment, we
then modified the baseline configuration by applying the sur-
face meteorological forcing data from the selected repre-
sentative grid cell within the IVO transect to all grid cells
along all AirMOSS transects. Thus, in this modified simu-
lation (HomF, for homogenized forcing), spatial variability
in meteorological forcing is artificially removed. All model
parameters related to soil type and vegetation, however, re-
main spatially variable, matching those in the baseline sim-
ulation. In the next idealized experiment (HomF&Veg), we
further replaced the vegetation-related parameters (including
vegetation class, vegetation height, and time-variable LAI
and greenness) along the AirMOSS transects using the corre-
sponding parameters from the representative grid cell, which
is characterized by dwarf tree vegetation cover. Thus, in this
simulation, spatial variability in both forcing and vegetation
is artificially removed.

In a third idealized experiment (HomF&Veg&Soil), spa-
tial variability in soil type and topography-related model pa-
rameters is removed along with that of the forcing and veg-
etation. The homogenized parameters include soil organic

www.the-cryosphere.net/13/2087/2019/ The Cryosphere, 13, 2087–2110, 2019



2094 J. Tao et al.: Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis

carbon content, porosity, saturated hydraulic conductivity,
Clapp–Hornberger parameters, wilting point, soil class, sand
and clay fraction, vertical decay factor for transmissiv-
ity, baseflow parameters, area partitioning parameters, and
timescale parameters for moisture transfer (Ducharne et al.,
2000; Koster et al., 2000). Here we use an intermediate soil
carbon content value (i.e. 40 kg m−2) for the homogeniza-
tion; recall that the carbon content impacts the soil ther-
mal properties (see Sect. 2.1). Our investigation reveals that
the model sensitivity to soil carbon content is much larger
for lower soil organic carbon content (SOC) than for higher
SOC and easily gets saturated for high SOC (i.e. larger than
∼ 100 kg m−2) (not shown). Thus, we trust that 40 kg m−2 is
an appropriate value representing an intermediate SOC con-
dition. All other soil parameters are homogenized to those at
the representative grid cell.

Finally, we investigate potential nonlinearities by con-
ducting two additional experiments: one in which we
homogenized both the vegetation and soil parameters
(HomVeg&Soil) and another in which we homogenized both
forcing and soil parameters (HomF&Soil). Put differently, in
experiment HomVeg&Soil only the forcing varies along the
transects, whereas in experiment HomF&Soil, only the veg-
etation parameters vary along the transects. Combined with
the experiment HomF&Veg (in which only soil properties
vary along the transects), these three experiments show in a
different way how each individual factor (forcing, vegetation,
or soil) can contribute to ALT variability. Table 2 provides a
summary of these idealized experiments. Taken together, the
six experiments (including the baseline) allow us to identify
the individual contribution of each factor to the ALT variabil-
ity along the AirMOSS transects. The results are discussed in
Sect. 4.2.

3.3 Quantifying ALT spatio-temporal characteristics

In Sect. 4.3 we quantify the large-scale characteristics of
ALT over the Northern Hemisphere for the current climate
(1980–2017) as determined by the response of the land
model to 38 years of MERRA-2 forcing (Sect. 2.1). The
output from this multi-decadal, offline simulation allows the
characterization of permafrost dynamics at each grid cell. In
particular, we can compute a number of relevant ALT statis-
tics, including mean, standard deviation, and skewness, from
the diagnosed yearly values at each cell, and we can examine
how these statistics relate to those of MERRA-2 forcing data
(particularly the mean annual air temperature, MAAT) over
the last 38 years.

Besides MAAT statistics, we also consider the evolution
of the air temperature during the warm season in terms of
the energy it could provide to the land surface and thus to
the determination of ALT. A simple surrogate for the total
warm-season energy in year N can be computed from daily-
averaged air temperature, Tair(t), and the freezing tempera-

ture, Tf (0 ◦C degree), as follows:

Tcum(N)=

t=M∑
t=1

Tpos(t), (2)

where

Tpos(t)=

{
Tair(t)− Tf if Tair(t) > Tf

0 if Tair(t)≤ Tf
. (3)

The index t in Eq. (2) for year N starts with a value of 1 on
1 September of the year (N − 1) and ends with a value of M

on 31 August of year N . The number of days M is 365 or
366 depending on the presence of a leap year. Note the air
temperature throughout this study means the near-surface air
temperature (i.e. 2 m above the displacement height) derived
from MERRA-2.

We first computed the correlation coefficient (R) between
the annual time series of ALT and

√
Tcum and between the

annual time series of ALT and maximum SWE (SWEmax) to
quantify the degree to which variations of ALT can be ex-
plained solely by air temperature or by snow mass. Then, to
quantify the joint contributions of

√
Tcum and SWEmax, we

performed a multiple linear regression analysis by fitting the
equation

ALT= a0+ a1
√

Tcum+ a2SWEmax (4)

to the available data. The correlation coefficient relating ALT
to
√

Tcum and SWEmax is the square root of the coefficient of
multiple determination (R2) obtained through fitting Eq. (4).
This equation is similar in form to the common degree-day
model for predicting ALT from accumulated degree days of
thaw based on the Stefan solution (e.g. Shiklomanov and
Nelson, 2002; Zhang et al., 2005; Riseborough et al., 2008;
Shiklomanov et al., 2010). Here, however, we constructed
Eq. (4) for a different purpose: to explore how much of the
temporal variability of ALT can be jointly explained by snow
mass and above-freezing air temperature. Before calculating
these correlation coefficients, we removed the linear trend
within ALT, Tcum, and SWEmax to avoid potentially exagger-
ating the correlation due to an underlying trend. The results
are discussed in Sect. 4.3.

3.4 Evaluating simulated Northern Hemisphere
permafrost extent and ALT

We first evaluated the simulated permafrost extent against
the observation-based permafrost map (Brown et al., 2002,
as shown in Fig. 1b). Note the model’s description of per-
mafrost is binary – either permafrost exists across a grid cell
or it is completely absent. We cannot then expect an exact
comparison to a specification of isolated permafrost (0 %–
10 % of area by definition) or even, to a lesser extent, spo-
radic permafrost (10 %–50 % of area by definition). There-
fore, we compared our simulated permafrost area with that
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Table 2. List of idealized simulation experiments along the AirMOSS transects.

Experiment name Meteorological forcing Vegetation Soil parameters∗

Baseline Original Original Original
HomF Homogenized Original Original
HomF&Veg Homogenized Homogenized Original
HomF&Veg&Soil Homogenized Homogenized Homogenized
HomVeg&Soil Original Homogenized Homogenized
HomF&Soil Homogenized Original Homogenized

∗ CLSM soil parameters include soil organic carbon content, porosity, saturated hydraulic conductivity,
Clapp–Hornberger parameters, wilting point, soil class, sand and clay fraction, vertical decay factor for
transmissivity, baseflow parameters, area partitioning parameters, and timescale parameters for moisture
transfer (Koster et al., 2000; Ducharne et al., 2000; Tao et al., 2017).

of the total area of continuous, discontinuous, and sporadic
permafrost area together from Brown et al. (2002) and com-
puted the percentage error relative to the observation-based
area (i.e. the total area of continuous, discontinuous, and spo-
radic permafrost regions). We also compared our simulated
permafrost area against the total area of only continuous and
discontinuous permafrost regions.

Further, the CALM network of in situ ALT measurements
(Sect. 2.3) allows a quantitative evaluation of the simulated
ALTs for the grid cells containing measurement sites. Our
comparisons here focus on both multi-year annual ALTs
and the average (climatological) ALT at the 81 km2 scale of
CLSM data. To ensure a consistent comparison, we average
the simulated ALTs only over the years for which observa-
tions are available. As noted in Sect. 3.1 and the Supplement,
the uncertainty of the CALM ALT measurements in the con-
text of evaluating grid-cell-scale model results theoretically
involves uncertainty derived from probing point measure-
ment uncertainty, site-scale mean uncertainty, and upscaling
errors in going from the site scale to the model scale. This
latter uncertainty, in particular, is unknown. In our figures (in
Sect. 4.4) we show the standard deviation of the observed
ALT as a very crude surrogate for the spatial representative-
ness error associated with the point-to-grid comparison. As
before, we make no claim here that the standard deviations
shown represent the relevant statistical uncertainty. The re-
sults are discussed in Sect. 4.4.

4 Results

4.1 Simulated ALT versus in situ measurements and
AirMOSS retrievals in Alaska

In this section, we compare the simulated ALT and the Air-
MOSS ALT retrievals at the 81 km2 model resolution. Note
that Chen et al. (2019) provide maps of the AirMOSS re-
trievals and an evaluation versus in situ measurements at the
native (20 by 60 m) scale of the retrievals.

Figure 3 compares the spatial pattern of AirMOSS ALT re-
trievals and CLSM-simulated results. Generally, the patterns

of the AirMOSS retrievals and CLSM results are quite dif-
ferent. For example, the AirMOSS-retrieved ALT is greater
in the northern portion of the DHO transect than in the
southern portion (Fig. 3a), whereas this pattern is largely
reversed in the simulated ALT for DHO (Fig. 3b). Across
all transects, there are portions where the AirMOSS ALT
is less than the CLSM-simulated ALT and portions where
the AirMOSS ALT is greater (Fig. 3c), though it should be
noted that the differences in Fig. 3c are generally less than
the assumed uncertainty of 0.l5 m (see Sect. 3.1). Gener-
ally, the CLSM-simulated ALT shows relatively larger spa-
tial variability (0.35–0.85 m) than the AirMOSS retrievals
(0.4–0.6 m). The AirMOSS ALT exhibits some spatial vari-
ability at the native resolution (see Chen et al., 2019), but
much of this variability averages out during the aggregation
to the coarse model grid (Fig. 3a). Variations of the simulated
ALT within a single transect (Fig. 3a) are predominantly in-
duced by changes in soil type (indicated in Fig. 2c and d).
In essence, the higher the organic carbon content within the
soil, the smaller the simulated ALT due to slower heat trans-
fer associated with lower thermal conductivity, higher poros-
ity, heat capacity, etc. (Tao et al., 2017). See also Sect. 4.2
for a discussion of the influence of soil texture on the spatial
pattern of ALT.

Next, we compare the simulated ALT in 2015 with in situ
observations from the CALM and UAF sites that are col-
located with the AirMOSS transects (Sect. 3.1). Figure 4a
and b show that the CLSM-simulated ALTs agree with the in
situ observations with an overall mean bias of −0.05 m and
an RMSE of 0.17 m. The most significant discrepancies be-
tween the CLSM-simulated ALT and in situ measurements
are at U6, U31, FB1&FBD&FBW (Fig. 4a), where the simu-
lated ALT underestimates the in situ measurements by 0.25–
0.28 m; and at U28, where the simulated ALT overestimates
the in situ ALT by 0.27 m. Nevertheless, the scatter in Fig. 4b
is large, and the corresponding correlation coefficient is quite
weak (0.27).

The AirMOSS ALT radar retrievals, for their part, again
averaged to the 81 km2 model resolution (Sect. 2.2), show
less spatial variability than the observations (Fig. 4a). The
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Figure 3. (a) Radar retrievals of ALT derived from P-band radar observations on 29 August 2015 and 1 October 2015 for IVO, ATQ, BRW,
and DHO, aggregated to 81 km2 model grid cells. (b) CLSM-simulated ALT. (c) Difference between the aggregated ALT retrievals and the
CLSM-simulated results. Magenta squares represent CALM sites covered by the flight swath, whereas black circles represent UAF sites.

Table 3. Evaluation metrics for model-simulated ALT and AirMOSS retrievals for 2015.

Metric All sites Sites with ALT measurements within
AirMOSS sensing depth (∼ 60 cm)

CLSM-simulated AirMOSS ALT CLSM-simulated AirMOSS ALT
ALT retrievals ALT retrievals

RMSE (m) 0.17 0.17 0.12 0.06
Bias (m) −0.05 −0.12 0.01 −0.01
R 0.27 0.61 −0.00 0.64

largest error for the AirMOSS retrievals at the model scale
is also at FB1&FBD&FBW, where the retrievals signifi-
cantly underestimate the observed in situ ALT by 0.38 m.
Note that radar retrievals at the 81 km2 scale are not avail-
able at some sites because of our imposed 30 % filling re-
striction. Although the AirMOSS ALT retrievals generally

underestimate the in situ ALT measurements (as shown in
Fig. 4a), the retrievals tend to be more consistent with the
observations when the in situ measurements are within the
∼ 60 cm sensing depth of the P-band radar data, as indicated
in Table 3. Specifically, excluding the sites with in situ ALT
measurements that exceed the AirMOSS sensing depth of
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Figure 4. (a) ALT observations (red) for 2015 from CALM and UAF sites covered by AirMOSS swaths and from radar retrievals aggregated
to 81 km2 grid cells (green), and CLSM-simulated ALT at 81 km2 (blue). The short name of the corresponding covering swath is shown
on the top (see also Fig. 2a). Error bars represent the standard deviation for multiple observations at in situ sites. No standard deviations
are provided for UAF sites since single-point measurements were deployed. Averaged values were provided if multiple sites appear within a
same model grid cell (e.g. U1&U2, U4&U5, WD1&WD2, FB1&FBD&FBW, and SG1&SG2). The sites are arranged aligning with the flight
direction. (b) CLSM estimates of ALT for 2015 versus in situ measurements with error bars indicating the standard deviation as in panel (a).
(c) Same as panel (b) but versus aggregated AirMOSS ALT at the model scale. The error bars here represent the uncertainty for radar retrieval
means within each 81 km2 grid cell as explained in Sect. 3.1. Corresponding estimates of CLSM uncertainty, which are presumably large,
are not shown in the figure.

∼ 60 cm, the overall mean bias for the AirMOSS retrievals
at the 81 km2 scale drops to−0.01 m, and the correlation co-
efficient increases to 0.64. In contrast, the CLSM simulation
results show a bias of 0.01 m and a zero correlation coeffi-
cient at these sites.

Nevertheless, as noted in Sect. 3.1, given that the upscaling
errors in going from the CALM site scale to the model scale
are unknown and the fact that the standard deviation of these
measurements (as shown by error bars in Fig. 4a and b) in-
dicates large representativeness errors of the in situ measure-
ments, the point-to-grid comparison result is hard to quantify.
In this regard, the AirMOSS retrievals aggregated to the same
scale as model results provide a comparable counterpart for
evaluation. Figure 4c further shows that the CLSM-simulated
ALT agrees well with the AirMOSS ALT retrievals to within
the measurement uncertainty of 0.15 m at all the site-located
model grid cells. Indeed as Fig. 3c illustrated, the differences
between simulated ALT and the AirMOSS retrievals over all
the transects examined here are generally below the measure-
ment uncertainty of 0.15 m.

4.2 Sources of ALT spatial variability: results from
idealized experiments

Here we investigate the specific factors that drive ALT spatial
variability along all 10 of the AirMOSS transects (Fig. 2a).
For this analysis, the simulated ALT estimates were aggre-
gated across the width of the radar swath (compare Fig. 3).
Figure 5a illustrates that the simulated ALT captures the spa-
tial variability exhibited by the in situ measurements. This
conclusion is, however, very tentative given the limited num-
ber of in situ ALT observations.

The simulated ALT is shallowest in the northern transects
(ATQ, BRW, and DHO) and deepest in the southeastern tran-
sects (KYK, COC, KGR, and AMB). This pattern corre-
lates somewhat (R = 0.46) with that of the mean screen-level
(2 m) air temperature (Tair) for the preceding 12-month pe-
riod (i.e. from 1 September 2014 to 31 August 2015) from
MERRA-2 (green line in Fig. 5a). The soil carbon content, by
contrast, appears anti-correlated (R =−0.59) with the simu-
lated ALT, as exemplified by the transect portions within the
red box (Fig. 5a and b). Such a correlation presumably re-
flects the fact that soil with high organic carbon content has
low thermal conductivity, which hinders heat transfer from
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Figure 5. (a) CLSM-simulated ALT (thawed-to-frozen depth) on 29 August 2015 along the AirMOSS flight transects. In situ ALT obser-
vations from UAF and CALM are shown as red circles and magenta diamonds, respectively. Averaged air temperature at 2 m (Tair) from
the preceding annual period (i.e. 1 September 2014 to 31 August 2015) is shown in green with the scale on the right ordinate. (b) Organic
carbon content and (c) maximum snow depth during the preceding annual period (again from 1 September 2014 to 31 August 2015). The
red rectangle across panels (a) and (b) highlights a portion of the domain that shows anti-correlation between organic carbon content and
modelled ALT (see Sect. 4.2). The abscissa in panel (c) provides cumulative distances in units of kilometres along the transects.

the surface to the deeper soil in the summertime, thus result-
ing in a relatively smaller ALT. In addition, heat transfer is
slowed by a higher effective heat capacity associated with
higher organic carbon content – not from the carbon itself
but from the extra water that can be held in the soil due to
the increased porosity. The maximum snow depth (Fig. 5c)
displays a positive correlation with ALT (R = 0.47), reflect-
ing, at least in part, the fact that subsurface soil temperatures
remain relatively insulated under thick and persistent snow
cover, which reduces heat transfer out of the soil column
during the wintertime and hence facilitates a deeper thawing
during the summer and thus a deeper ALT.

The correlations in Fig. 5 suggest (without proving causal-
ity) that for the model, surface meteorological forcing (in-
cluding air temperature and precipitation) and soil type are
important drivers of ALT variability along the AirMOSS
transects. However, the relatively low values of the correla-
tions indicate that a simple linear relationship cannot explain
the mutual control that these variables exert on ALT spatial
variability. In the remainder of this section, we use a series
of idealized model simulations (as described in Sect. 3.2) to
better quantify the relative impacts of these driving factors
along the AirMOSS transects.

The results of the idealized experiments are shown in
Fig. 6. The above-mentioned, large-scale spatial variation of
ALT in the baseline simulation, with larger values in the
southeastern transects (KYK, COC, and KGR) and lower

values in the northern transects (ATQ, BRW, and DHO),
is absent after homogenizing the meteorological forcing
(HomF; Fig. 6a). Experiment HomF correspondingly has
much less spatial variation in the temperature of the top soil
layer than does the baseline simulation (Fig. 6b). In addition,
homogenizing the forcing (which includes snowfall) signifi-
cantly reduces the variability in maximum snow depth along
the AirMOSS transects (Fig. 6c). These results indicate that,
in the model, meteorological forcing exerts the dominant
control over the spatial patterns of ALT, the temperature in
the top soil layer, and snow depth at the regional scale, as
expected.

Homogenizing the vegetation attributes in addition to the
forcing (HomF&Veg) results in ALT differences (relative to
HomF) primarily along the northern transects (ATQ, BRW,
and DHO). Along these transects, homogenizing the vegeta-
tion parameters (including LAI and tree height) to those of
the representative grid cell within the IVO transect results in
generally shallower ALT. This is because the generally lower
albedo of the taller and leafier trees (representative of the
IVO transect) during the snow season resulted in increased
snowmelt and thus reduced snowpack during the snow sea-
son (compare the green and red curves in Fig. 6c), thereby
reducing the thermal insulation of the wintertime ground.
With reduced insulation, cold season ground temperatures
dropped, making it more difficult for temperatures to recover
during summer (Tao et al., 2017).
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Figure 6. (a) CLSM-simulated ALT (thawed-to-frozen depth) on
the flight date (i.e. 29 August 2015) from the top four experiments
listed in Table 2, (b) simulated top layer soil temperature on the
flight date, (c) maximum snow depth the during the preceding an-
nual period (i.e. from 1 September 2014 to 31 August 2015), and
(d) soil moisture within the soil profile on the flight date along the
connected transects for the four experiments. The black dot indi-
cates the representative location within the IVO transect from which
the forcing, vegetation, and/or soil data are used to homogenize the
inputs in the idealized experiments. By construction, all simulations
provide identical results at this representative location.

As might be expected, the simulation in which soil prop-
erties are homogenized in conjunction with forcing and veg-
etation (i.e. HomF&Veg&Soil) essentially eliminates all re-
maining spatial variability in ALT, snow depth, and soil tem-
perature. Owing to the strong control of soil-type-related pa-
rameters (see Sect. 3.2 and Table 2) on soil moisture, spa-
tial variability in soil moisture remains high in HomF and
HomF&Veg and is only eliminated once these soil-type-
related parameters are homogenized (Fig. 6d), which ex-
plains the abrupt changes shown in Fig. 3c as mentioned
in Sect. 3.1. (Note that to maintain consistency with the
hardwired scaling factors for snow-free albedo within the
model (Mahanama et al., 2015) we still used the origi-
nal, vegetation-related parameters to calculate surface albedo
during snow-free conditions along the transects. This is

Figure 7. (a) Standard deviation of ALT along the AirMOSS tran-
sects from the top four experiments listed in Table 2. (b) The in-
dividual impact (or contribution) from heterogeneous vegetation,
soil type, and meteorological forcing, respectively. For instance,
the impact of vegetation (or soil, or forcing) heterogeneity is the
ALT standard deviation along the transects from HomF&Soil (or
HomF&Veg, or HomVeg&Soil).

likely the cause of the few tiny bumps seen in Fig. 6a for
HomF&Veg&Soil.)

An alternative view of these results is provided in Fig. 7a,
which shows the (spatial) standard deviation of ALT along
the AirMOSS transects for each of the above experiments.
Homogenizing the meteorological forcing data results in a
significant reduction of the ALT standard deviation (from
0.16 to 0.10). Additionally homogenizing the vegetation only
reduces the ALT standard deviation slightly (from 0.10 to
0.09). The remaining ALT variability is eliminated through
the additional homogenization of the soil-type-related pa-
rameters (HomF&Veg&Soil), which emerge as another im-
portant driver of ALT variability along the AirMOSS tran-
sects. Note that the ALT variability associated with soil type
is generally realized at smaller spatial scales than that asso-
ciated with the meteorological forcing discussed earlier re-
garding Fig. 6a. The impact of potential nonlinearities is ex-
amined in Fig. 7b, which shows the individual impact of veg-
etation, soil, and forcing heterogeneity on the ALT standard
deviation along the transects, with the other inputs having
been homogenized. The graphic confirms that the meteoro-
logical forcing is the dominant driver of ALT spatial variabil-
ity in our modelling system, followed by the soil-type-related
parameters and the vegetation parameters.

Note that in Fig. 6a the soil impact on ALT (the difference
between HomF&Veg&Soil in black and HomF&Veg in red)
appears smaller than that of the vegetation (the difference be-
tween HomF in green and HomF&Veg in red) over the north-
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ern transects (ATQ, BRW, and DHO). Even so, Fig. 7b shows
that, in terms of the integrated impact along all the transects,
the soil influence clearly outweighs the influence of vegeta-
tion – at several other transects, including HUS, KYK, COC,
AMB, IVO and the first half of ATQ (where vegetation con-
ditions might be similar to those used for homogenizing), the
changes in vegetation parameters do not have much impact.

4.3 Spatio-temporal characteristics of ALT across the
Northern Hemisphere

Figure 8a shows the distribution of mean ALT over the mod-
elling domain, and Fig. 8b shows the ALT standard deviation
in time over the 38-year period. As might be expected, ALT
tends to increase with distance from the pole, with the largest
values found in Mongolia and near the southern portion of
the Hudson Bay, though there are areas (e.g. just north of
60◦ N at ∼ 120◦ E) with local minima that break this pattern.
The largest ALT standard deviations (red colour in Fig. 8b)
are found mainly in discontinuous and sporadic permafrost
regions (see Fig. 1b) where ALTs are deeper on average than
that in the continuous permafrost region. Figure 8c provides
the skewness of the temporal distribution. Though there are
some exceptions, by and large, the skewness is positive in
most permafrost regions, suggesting that the largest posi-
tive ALT anomalies tend to be of greater magnitude than the
largest negative anomalies.

Figure 8d displays the average of annual mean 2 m air tem-
perature as derived from MERRA-2. The observed contin-
uous and discontinuous permafrost areas shown in Fig. 1b
are well confined within the cold side of the 0 ◦C (273.15 K)
isotherm in the mean air temperature map (Fig. 8d). For the
most part, the observed sporadic and isolated permafrost re-
gions of Fig. 1b also lie on the cold side of the 0 ◦C isotherm.
The consistency with this isotherm, however, is not as clearly
present in the simulated permafrost extent (i.e. the extent of
the non-grey and non-white areas in Fig. 8a).

The relationship between the spatio-temporal characteris-
tics of simulated ALT and air temperature forcing has been
investigated before in many studies at the site to the land-
scape scale (e.g. Klene et al., 2001; Shiklomanov and Nel-
son, 2002; Zhang et al., 2005; Juliussen and Humlum, 2007)
and at the regional scale (e.g. Anisimov et al., 2007). Here we
simply analyse the correlation coefficient between ALT and
two variables: the proxy of total energy input into the ground
(i.e.
√

Tcum; see Sect. 3.3) and the maximum SWE. Our goal
is to explore how much of the spatio-temporal variability of
ALT across the globe can be jointly explained by these two
variables.

Figure 9a shows a map of the correlation coefficient be-
tween the 37-year time series (i.e. from September 1980
through August 2017) of

√
Tcum and the corresponding time

series of simulated ALT. The areas with p values larger than
0.05, which indicate correlations that are not statistically dif-
ferent from zero at the 95 % confidence level, are shown as

green. Figure 9a demonstrates that most permafrost regions
indeed have significant positive correlations (red colours) be-
tween ALT and

√
Tcum. Clearly, in these regions, air temper-

ature exerts a dominant control on year-to-year ALT variabil-
ity.

However, not all regions exhibit a significant correlation;
other variable(s) must also be exerting control on interannual
ALT variability. One reasonable candidate variable is snow-
pack. As noted above, snow acts as a thermal insulator – re-
gions with thicker snowpack are better able to insulate the
ground from becoming too cold during winter, thereby sup-
porting higher subsurface temperatures during non-winter
months. Variable, but often thick, snowpack is in fact com-
mon in the areas of Fig. 9a that show a low (green) or nega-
tive (blue) correlation between ALT and

√
Tcum – areas such

as central Siberia, the southern part of eastern Siberia, and a
vast region in Canada surrounding the Hudson Bay, as well
as other small areas that appear in high mountains or on the
windward side of the mountains (e.g. locations B, C and D in
Fig. 1a).

In Fig. 9b we show the correlation coefficient between the
time series of ALT and the maximum SWE (SWEmax) during
the preceding winter. A positive correlation is seen in many
areas, most notably in areas with a poor or negative correla-
tion between ALT and

√
Tcum (Fig. 9a) – for example, just

west of the Hudson Bay and along a zonal band at 60◦ N
in Russia. Apparently, in these areas, the impacts of snow
physics on ALT outweigh the impacts of lumped energy in-
put (
√

Tcum). In some other areas ALT correlates positively
with both

√
Tcum and SWEmax. Figure 9c shows how the

resulting coefficient of multiple correlation varies in space.
High correlations largely blanket the modelled area. That
is, over most of the area examined, a substantial portion of
the year-to-year variability of ALT can be explained by joint
variations in

√
Tcum and SWEmax. Even so, a few limited ar-

eas still exhibit low correlations (p > 0.05, green colour in
Fig. 9c). Some of these areas are in mountainous regions,
for instance the Eastern Siberian (Ostsibirisches) Bergland,
where more complex environmental controls might be play-
ing a dominant role. In addition, MERRA-2 snow forcing
might be severely erroneous in these regions.

4.4 Evaluation of simulated permafrost extent and
ALT across the Northern Hemisphere

Qualitatively, the simulated permafrost extent (Fig. 8a) gen-
erally shows reasonable agreement with the observation-
based permafrost map in Fig. 1b, especially for the continu-
ous permafrost regions. This is shown explicitly in Fig. 10a.
The main deficiency in the simulation results is the failure
to capture a large area of permafrost in western Siberia (la-
belled as A in Fig. 1a). The reasons for this particular defi-
ciency are unclear. One possible reason is that the permafrost
in western Siberia is characterized as an ecosystem-protected
permafrost zone (Shur and Jorgenson, 2007) where a thick
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Figure 8. (a) Mean, (b) standard deviation, and (c) skewness of CLSM-simulated ALT over the 38 years (1980–2017). Grey indicates
permafrost-free (Pfree) areas in the simulation. (d) The 38-year averaged MERRA-2 annual atmospheric temperature at 2 m above displace-
ment height (Tair). The red boundary outlines the continuous and discontinuous permafrost regions according to Brown et al. (2002).

moss-organic layer (i.e. moss-dominated mires; Anisimov
and Reneva, 2006; Anisimov, 2007; Peregon et al., 2009)
protects the permafrost below from thawing under a warm
air temperature. This is mainly attributed to the low thermal
conductivity of the organic layer in summer, which strongly
insulates the permafrost from the warm atmosphere, and the
high thermal conductivity of the frozen organic layer in win-
ter, which allows cold temperature penetration from above,
provided the snowpack is not too thick (Nicolsky et al., 2007;
Jafarov and Schaefer, 2016). This mechanism is lacking in
the current version of CLSM (Tao et al., 2017). Thus, im-
proving the model through a better representation of thermal
processes in an organic layer above the soil column in combi-
nation with initializing the simulation with a sufficiently cold
soil temperature should improve the simulation results. This
work is reserved for a future study.

Another possible reason for the poor skill in western
Siberia is that the model initial conditions there were too
warm, although MERRA-2 appears to underestimate sum-
mer air temperatures in this region (Draper et al., 2018;
their Fig. 7e). Note that some other global models, such
as CLM3 and the Community Climate System Model ver-
sion 3 (CCSM3) as reported in Lawrence et al. (2012), also
missed this area of permafrost and that updated versions of
these models (i.e. CLM4 and CCSM4) showed improved
performance in this regard (Lawrence et al., 2012). Guo et
al. (2017) reported underestimated permafrost extent simu-

lated in western Siberia using CLM4.5 driven by three dif-
ferent reanalysis forcings (i.e. CFSR, ERA-I, and MERRA),
and they showed an improved simulation of permafrost ex-
tent in this area when using another reanalysis forcing, the
CRUNCEP (Climatic Research Unit – NCEP) (Guo and
Wang, 2017). Guimberteau et al. (2018) found similar im-
provements stemming from the use of CRUNCEP forcing.
We leave for further study whether the MERRA-2 forcing
data are responsible for the western Siberia deficiency seen
in our results.

The disagreements between the simulated and observed
permafrost extents (covering about a few degrees latitude)
toward the south in Fig. 10a (green and blue areas at the
southern edge of permafrost regions) are less of a concern,
since the comparison in such areas is muddied by the in-
terpretation of isolated permafrost in the observational map
(Fig. 1b). The specific areas of each type shown in Fig. 10a
are listed in Table 4. The simulated permafrost extent cov-
ers 81.3 % of the observation-based area (i.e. the total area of
continuous, discontinuous, and sporadic permafrost regions)
and misses 18.7 % of the observed permafrost area. When
comparing simulated permafrost extent with only continu-
ous and discontinuous types, these metrics change to 87.7 %
and 12.3 %, respectively. Meanwhile, the permafrost extent
is overestimated by 3.2× 106 km2.

To produce Fig. 10b, multi-year averages of CLSM-
simulated ALT values were spatially averaged over each of
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Figure 9. Correlation coefficient between (a) ALT and square root
of the effective accumulated air temperature (

√
Tcum) and (b) ALT

and maximum SWE (SWEmax) from the preceding September to
the present August over the period 1980–2017. (c) Multi-variable
coefficient of correlation for a fitted multiple linear regression
model between ALT and

√
Tcum and SWEmax. Areas that have a

p value larger than 0.05 (i.e. statistically insignificant correlation)
are masked in green. Grey indicates permafrost-free (Pfree) areas in
the simulation.

Table 4. Evaluation results for simulated permafrost extent against
the permafrost map by Brown et al. (2002). The calculation was
based on the comparison between simulated permafrost area and
the total area of continuous, discontinuous, and sporadic permafrost
regions from Brown’s map. The number in the brackets was cal-
culated against the total area of continuous and discontinuous per-
mafrost regions.

Case CLSM Obs. Simulated area Percentage relative
(×106 km2) to observation

4 No No 48.8 –
3 Yes No 1.9 –
2 No Yes 3.2 (1.7) 18.7 % (12.3 %)
1 Yes Yes 13.8 (12.3) 81.3 % (87.7 %)

the four permafrost types outlined in Fig. 1b. (As is appro-
priate, permafrost is only occasionally simulated over the
fourth, isolated, permafrost type. The ALT average shown
for this type is thus based on a particularly limited number
of grid cells.) The average ALT is smallest in the continu-

ous permafrost zone, higher in the discontinuous zone, and
higher still in the sporadic permafrost zone; it is highest in
areas of isolated permafrost. The progression, of course, is
in qualitative agreement with expectations – larger breaks in
permafrost coverage imply a greater amount of available en-
ergy, which should also act to increase ALT.

The observed and CLSM-simulated annual ALT and
multi-year ALT averages are compared in Fig. 11. Gener-
ally, the simulated annual ALT and the averages agree rea-
sonably well with observations for shallow permafrost re-
gions, that is, for smaller ALT. A large bias, however, is
found for most of the Mongolia sites; in Mongolia, the ob-
served annual ALT and the climatological ALTs tend to be
much larger than the simulated ALTs (light purple dots in
Fig. 11). Overall, the RMSE, bias, and R are all signifi-
cantly improved when the Mongolian sites are excluded from
consideration. Specifically for the climatological ALTs, the
RMSE (and bias) of simulated ALT climatological means is
1.22 m (and −0.48 m), and it drops to 0.33 m (and −0.04 m)
if the Mongolia sites are excluded (Fig. 11d). Given simpli-
fications in the model, uncertainties in boundary conditions
(e.g. vegetation types and soil properties), and upscaling is-
sues stemming from the coarse-scale nature of the forcing
data relative to the point-scale and plot-scale nature of the
observations (i.e. the representative errors as indicated by
the large standard deviation shown in Fig. 11a), these re-
sults seem encouraging. The correlation coefficient metric
(R), however, is somewhat less encouraging, amounting to
only 0.5 when considering all sites. The correlation coeffi-
cient is in fact lower (0.3) when the Mongolian sites are ex-
cluded; the correlation coefficient is 0.39 for the Mongolian
sites considered in isolation. Note that the existing literature
on simulated ALT fields (e.g. Dankers et al., 2011; Lawrence
et al., 2012; Guo et al., 2017) reveals a general tendency for
models to overestimate ALT climatology at the global scale.
In light of this, our results suggest that the CLSM-simulated
ALT fields are perhaps among the better simulation products,
especially for shallow permafrost.

Comparing the observed and simulated spatial distribu-
tions of the ALT averages provides a further test of the
accuracy of the simulation results (as shown in Fig. 12).
The model successfully simulates the large-scale spatial
patterns in ALT, capturing, for example, the variations in
Siberia, Svalbard, northern Canada, and northern Alaska (see
Fig. 12a, b). Figure 12c and d show the differences between
the observed and estimated values in middle latitudes (45
to 60◦ N) and high latitudes (60 to 90◦ N), respectively; in
agreement with Fig. 11a, the model clearly performs better
in high-latitude regions, i.e. outside of Mongolia. Many of
the sites north of 60◦ N (Fig. 12d) are coloured grey, indicat-
ing a small error in the simulation of ALT at these sites – the
errors at these sites range from only −0.10 to 0.10 m.

The significant underestimation of ALT in Mongolia might
result from errors in the meteorological forcing provided by
MERRA-2. However, a comparison (not shown) of MERRA-
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Figure 10. (a) Four comparison categories include (1) blue – CLSM collocates permafrost with the observation-based permafrost map of
Brown et al. (2002) as either continuous, discontinuous, or sporadic permafrost; (2) green – CLSM has no permafrost, but the observation-
based permafrost map does as either continuous, discontinuous, or sporadic types; (3) red – CLSM does have permafrost, but the observation-
based permafrost map does not or contains isolated permafrost; and (4) grey – CLSM has no permafrost and neither does the observation-
based permafrost map (except for isolated permafrost). (b) Area-weighted average of ALT as simulated by CLSM for the four different
permafrost types.

Figure 11. (a) Annual ALT from CLSM simulation vs. CALM observations with horizontal error bars indicating standard deviations of
measurements within the model grid cell. Error bar is absent if the number of measurements within a 81 km2 grid cell is less than three.
(b) As in panel (a) but excluding the Mongolia sites. (c) The 38-year average ALT for the period 1980–2017 from CLSM simulation vs.
CALM observations. (d) As in panel (c) but without the Mongolia sites. The correlation coefficient (R), bias, and root mean square error
(RMSE) are provided next to each subplot.

2 air temperatures with measurements at six weather stations
collocated with CALM sites in Mongolia calls this explana-
tion into question. While MERRA-2 summer temperatures
are indeed too low at four of the weather stations exam-
ined, they are too high at the other two weather stations. An
additional reason for the underestimation of ALT in Mon-
golia might be a mismatch between the land surface pa-

rameter values used in the model and the actual conditions
at each site. For instance, detailed soil information (https:
//www2.gwu.edu/~calm/data/webforms/mg_f.html, last ac-
cess: 27 July 2019) indicates that some Mongolian sites have
special rocky soil types including limestones (e.g. M04),
slatestones (e.g. M05), and gravelly sand (e.g. M06 and M08)
that are not well represented in the model. As another ex-
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Figure 12. Multi-year average ALT at CALM site locations for (a) CALM observations and (b) CLSM results. (c) ALT difference between
observations and model results for locations within 45–60◦ N latitude and 85–125◦ E longitude. (d) Same as panel (c) but for locations
poleward of 60◦ N latitude. In panels (c) and (d) grey indicates absolute ALT differences less than 0.10 m.

ample, sites on south-facing slopes presumably have much
deeper ALT than those on slopes with less exposure to the
sun, which is not captured by CLSM. The large represen-
tative errors of Mongolian sites are clearly illustrated by the
standard deviation (although computed only with three to five
measurements) as shown by the error bars in Fig. 11a.

5 Conclusion and discussion

We produced a dataset (effectively a derivative of MERRA-
2) of permafrost variations in space and time across middle-
to-high latitudes. This dataset can be considered unique in
terms of its daily temporal resolution combined with a rela-
tively high spatial resolution at the global scale (i.e. 81 km2).

The dataset, which is derived from a state-of-the-art reanal-
ysis (MERRA-2), shows reasonable skill in capturing per-
mafrost extent (87.7 % of the total area of continuous and
discontinuous types, according to one validation dataset) and
in adequately estimating ALT climatology (with a RMSE of
0.33 m and a mean bias of −0.04 m), excluding Mongolian
sites. We note that our MERRA-2-driven permafrost simu-
lation results, while potentially better than those we might
have obtained with MERRA forcing, are still lacking (e.g. in
western Siberia). Still, with its resolution and available vari-
ables (ALT, subsurface temperature, and ice content at differ-
ent depths), the dataset could prove valuable to many future
permafrost analyses.
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This work also provides a first comparison between two
highly complementary approaches to estimating permafrost:
model simulation and remote sensing. In northern Alaska,
excluding sites that have ALT measurements exceeding the
radar sensing depth (∼ 60 cm), the evaluation metrics for
ALT retrievals against in situ measurements are better than
those for simulated ALT at the 81 km2 scale. However, the
remotely sensed ALT estimates generally show lower lev-
els of spatial variability relative to the simulated ALT esti-
mates (and relative to the in situ observations), and the spatial
patterns of the simulated and retrieved values differ consid-
erably. The remote sensing approach is still relatively new,
with many aspects still requiring development. It is impor-
tant, though, to begin considering the modelling and remote
sensing approaches side by side, as both should play impor-
tant roles in permafrost quantification in the years to come.
Indeed, once the science fully develops, joint use of mod-
elling and remote sensing (e.g. through the application of
downscaling methods) should allow the generation of more
accurate permafrost products at higher resolutions.

It is important to note that the retrieved ALT was deter-
mined by the dielectric transition from thawed to frozen con-
ditions, whereas the modelled ALT and the ALT for some
of the in situ measurements was based on a freezing tem-
perature of 0 ◦C (see Sect. 2.1 and 2.3). Depending on local
conditions, soil does not typically freeze at 0 ◦C but rather
at slightly lower temperatures (e.g. around −1 ◦C) due to the
presence of dissolved compounds that depress the freezing
point (Watanabe and Wake, 2009). The sharp drop in con-
ductivity and dielectric constant is much more accurately tied
to a frozen state than to a temperature threshold. These and
other differences in the various ALT measurement methods
(Sect. 2.3) introduce considerable uncertainty into our com-
parisons. The use of the 0 ◦C degree threshold in CLSM for
determining the thawed or frozen layer may explain in part
the model’s underestimation of ALT, as may the lack of an
explicit treatment of local aspect, errors in assigned model
parameters, and so on.

Analysis of the CLSM-simulated data, along with data
produced in idealized experiments with specific homoge-
nized controls, shows how the statistics of permafrost vari-
ability in space are controlled by forcing variability and by
variability in the imposed surface boundary conditions. In
the idealized experiments, we employ successive homoge-
nization of controls to quantify how meteorological forcing,
soil type, and vegetation cover affect the underground ther-
modynamic processes associated with the variability of ALT
along the AirMOSS flight paths in Alaska. Meteorological
forcing and soil type are found to be the two dominant factors
controlling ALT variability along these transects. Vegetation
plays a smaller role by modulating the accumulation of snow.
A multiple regression analysis relating yearly ALT jointly to
accumulated air temperature and maximum SWE shows that
time variations in these two latter quantities explain most

of the time variability of ALT in the CLSM-identified per-
mafrost regions.

Many aspects of the modelling framework may contribute
to the noted errors in the simulated ALTs. For example, the
observed climatological ALTs at the Mongolia sites are all
larger than 3 m. This depth falls well within the sixth soil
layer of the model, which has a thickness of 10m; the sub-
surface vertical resolution in the CLSM may be too coarse
to capture these deeper ALTs. Test simulations (not shown)
with alternative model configurations indicate that increas-
ing the number of soil layers may act to decrease somewhat
the simulated ALT, suggesting that our values may be a little
overestimated; however, based on results from a new study
by Sapriza-Azuri et al. (2018), our use of a no-heat-flux con-
dition at the bottom boundary rather than a dynamic geother-
mal flux may lead to underestimates of ALT. Such uncertain-
ties should naturally be kept in mind when interpreting our
results. Our supplemental simulations (not shown) also sug-
gest that increasing the total modelled soil depth has only
a small impact on simulated ALT. Uncertainty in our de-
scription of soil organic carbon, i.e. both soil carbon con-
tent and vertical carbon distribution, leads to corresponding
uncertainty in our ALT simulations. We indeed find a sig-
nificant improvement in simulated ALT at several Mongo-
lian sites when we arbitrarily impose less total soil carbon
content and concentrate less soil carbon in top layers (not
shown). Besides the vertical distribution of soil carbon, the
vertical variation in other soil hydrological properties (e.g.
soil texture and porosity) should also play a significant role
since they all affect soil thermal conductivity and heat capac-
ity. In addition, the lack of a necessary organic layer on top of
soil column and the related thermal processes is also a major
deficiency for the model, especially in ecosystem-protected
permafrost regions.

Another issue affecting our ALT comparisons is the clima-
tological representation of vegetation parameters such as LAI
used in CLSM. An additional investigation (not shown) re-
vealed large differences between the LAI climatology used in
CLSM and more realistic, time-varying, satellite-based LAI
products at several Mongolian sites. In addition, while we
did exclude from our analyses any measurements that were
affected by notable disturbance (e.g. wildfire), the impacts
of other potential land changes on ALT, including overgraz-
ing in Mongolia (Sharkhuu and Sharkhuu, 2012; Liu et al.,
2013), were not explicitly treated in the model. The model
also lacks the vertical advective transport of heat in the sub-
surface due to downward-flowing liquid water, which can
significantly affect permafrost thawing (Kane et al., 2001;
Rowland et al., 2011; Kurylyk et al., 2014). Also relevant are
potential errors in the MERRA-2 forcing. The MERRA-2 re-
analysis is known to have problems capturing trends in high
latitudes (Simmons et al., 2017).

Such modelling deficiencies must always be kept in mind
when evaluating a product like the one examined here.
That said, as long as appropriate caution is employed, the
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product could have significant value for further analyses of
permafrost. The product features daily subsurface temper-
atures and depth-to-freezing estimates over middle-to-high
latitudes in the Northern Hemisphere at an 81 km2 reso-
lution, covering the period 1980–2017. It is, in a sense, a
value-added derivative product of the MERRA-2 reanalysis
and will be available via the National Snow and Ice Data
Center (NSIDC). The comparisons against observations dis-
cussed above, along with the intuitively sensible connec-
tions shown between permafrost variability, forcing variabil-
ity, and boundary condition variability, give confidence that
this dataset contains useful information. These data can po-
tentially contribute, for example, to ecological studies fo-
cused on the dynamics of microbial activity and soil respi-
ration in cold regions, on vegetation migration/adaptation in
response to climate change, and so on.

Data availability. The CALM ALT observations used in this study
are available at https://www2.gwu.edu/~calm/. The UAF observa-
tions are available at http://permafrost.gi.alaska.edu. The AirMOSS
ALT retrievals are available at https://daac.ornl.gov/ABOVE/
guides/ABoVE_PBand_SAR.html (last access: 27 July 2019). The
MERRA-2 land forcing fields are available at https://goldsmr4.
gesdisc.eosdis.nasa.gov/data/MERRA2/ (last access: 27 July 2019).
The produced permafrost product, including ALT, subsurface soil
temperature, and ice content, will be available at the National Snow
and Ice Data Center (NSIDC) and are also available from the corre-
sponding author upon request.
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