Articles | Volume 13, issue 4
https://doi.org/10.5194/tc-13-1187-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-1187-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of contemporary satellite sea ice thickness products for Arctic sea ice
Heidi Sallila
CORRESPONDING AUTHOR
Marine Research, Finnish Meteorological Institute, Helsinki, Finland
Sinéad Louise Farrell
Cooperative Institute for Climate and Satellites, University of Maryland, College Park, MD, USA
Joshua McCurry
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
Eero Rinne
Marine Research, Finnish Meteorological Institute, Helsinki, Finland
Related authors
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
EGUsphere, https://doi.org/10.5194/egusphere-2022-214, https://doi.org/10.5194/egusphere-2022-214, 2022
Short summary
Short summary
Sea ice has a large interannual variability, studying its evolution requires long time series of observation. In this paper, we propose the first method to extend Arctic sea ice thickness measurements time series from ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each winter between 1995 and 2021.
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022, https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Short summary
We propose a method to provide sea ice thickness (SIT) estimates over a test area in the Arctic utilizing radar altimeter (RA) measurement lines and C-band SAR imagery. The RA data are from CryoSat-2, and SAR imagery is from Sentinel-1. By combining them we get a SIT grid covering the whole test area instead of only narrow measurement lines from RA. This kind of SIT estimation can be extended to cover the whole Arctic (and Antarctic) for operational SIT monitoring.
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
EGUsphere, https://doi.org/10.5194/egusphere-2022-214, https://doi.org/10.5194/egusphere-2022-214, 2022
Short summary
Short summary
Sea ice has a large interannual variability, studying its evolution requires long time series of observation. In this paper, we propose the first method to extend Arctic sea ice thickness measurements time series from ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each winter between 1995 and 2021.
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022, https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Short summary
We propose a method to provide sea ice thickness (SIT) estimates over a test area in the Arctic utilizing radar altimeter (RA) measurement lines and C-band SAR imagery. The RA data are from CryoSat-2, and SAR imagery is from Sentinel-1. By combining them we get a SIT grid covering the whole test area instead of only narrow measurement lines from RA. This kind of SIT estimation can be extended to cover the whole Arctic (and Antarctic) for operational SIT monitoring.
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021, https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Short summary
Ice navigators rely on timely information about ice conditions to ensure safe passage through ice-covered waters, and one parameter, the degree of ice ridging (DIR), is particularly useful. We have investigated the possibility of estimating DIR from the geolocated photons of ICESat-2 (IS2) in the Bay of Bothnia, show that IS2 retrievals from different DIR areas differ significantly, and present some of the first steps in creating sea ice applications beyond e.g. thickness retrieval.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Joula Siponen, Petteri Uotila, Eero Rinne, and Steffen Tietsche
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-272, https://doi.org/10.5194/tc-2019-272, 2019
Manuscript not accepted for further review
Short summary
Short summary
Long sea-ice thickness time series are needed to better understand the Arctic climate and improve its forecasts. In this study 2002–2017 satellite observations are compared with reanalysis output, which is used as initial conditions for long forecasts. The reanalysis agrees well with satellite observations, with differences typically below 1 m when averaged in time, although seasonally and in certain years the differences are large. This is caused by uncertainties in reanalysis and observations.
Iina Ronkainen, Jonni Lehtiranta, Mikko Lensu, Eero Rinne, Jari Haapala, and Christian Haas
The Cryosphere, 12, 3459–3476, https://doi.org/10.5194/tc-12-3459-2018, https://doi.org/10.5194/tc-12-3459-2018, 2018
Short summary
Short summary
We quantify the sea ice thickness variability in the Bay of Bothnia using various observational data sets. For the first time we use helicopter and shipborne electromagnetic soundings to study changes in drift ice of the Bay of Bothnia. Our results show that the interannual variability of ice thickness is larger in the drift ice zone than in the fast ice zone. Furthermore, the mean thickness of heavily ridged ice near the coast can be several times larger than that of fast ice.
Stephan Paul, Stefan Hendricks, Robert Ricker, Stefan Kern, and Eero Rinne
The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018, https://doi.org/10.5194/tc-12-2437-2018, 2018
Short summary
Short summary
During ESA's second phase of the Sea Ice Climate Change Initiative (SICCI-2), we developed a novel approach to creating a consistent freeboard data set from Envisat and CryoSat-2. We used consistent procedures that are directly related to the sensors' waveform-echo parameters, instead of applying corrections as a post-processing step. This data set is to our knowledge the first of its kind providing consistent freeboard for the Arctic as well as the Antarctic.
Graham D. Quartly, Eero Rinne, Marcello Passaro, Ole B. Andersen, Salvatore Dinardo, Sara Fleury, Kevin Guerreiro, Amandine Guillot, Stefan Hendricks, Andrey A. Kurekin, Felix L. Müller, Robert Ricker, Henriette Skourup, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, https://doi.org/10.5194/tc-2018-148, 2018
Revised manuscript not accepted
Short summary
Short summary
Radar altimetry is a high-precision technique for measuring sea level and sea ice thickness from space, which are important for monitoring ocean circulation, sea level rise and changes in the Arctic ice cover. This paper reviews the processing techniques needed to best extract the information from complicated radar echoes, and considers the likely developments in the coming decade.
Sandra Schwegmann, Eero Rinne, Robert Ricker, Stefan Hendricks, and Veit Helm
The Cryosphere, 10, 1415–1425, https://doi.org/10.5194/tc-10-1415-2016, https://doi.org/10.5194/tc-10-1415-2016, 2016
Short summary
Short summary
Our study aimed to investigate whether CS-2 and Envisat radar freeboard can be merged without intermission biases in order to obtain a 20-year data set. The comparison revealed a reasonable regional agreement between radar freeboards derived from both sensors. Differences are mostly below 0.1 m for modal freeboard and even less for mean freeboard over winter months (May–October). The highest differences occur in regions with multi-year sea ice and along the coasts.
Alek A. Petty, Michel C. Tsamados, Nathan T. Kurtz, Sinead L. Farrell, Thomas Newman, Jeremy P. Harbeck, Daniel L. Feltham, and Jackie A. Richter-Menge
The Cryosphere, 10, 1161–1179, https://doi.org/10.5194/tc-10-1161-2016, https://doi.org/10.5194/tc-10-1161-2016, 2016
Short summary
Short summary
This study presents an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper (ATM) laser altimeter, flown as part of NASA's Operation IceBridge mission. We describe and implement a newly developed sea ice surface feature-picking algorithm and derive novel information regarding the height, volume and geometry of surface features over the western Arctic sea ice cover.
E. Rinne and M. Similä
The Cryosphere, 10, 121–131, https://doi.org/10.5194/tc-10-121-2016, https://doi.org/10.5194/tc-10-121-2016, 2016
Short summary
Short summary
This paper demonstrates the use of the CryoSat-2 SAR altimeter in operational ice charting. We take CryoSat-2 data and compare them to ice charts over the sea-ice-covered regions in the Barents and Kara seas. We also present an automatic classification method for CryoSat-2 measurements that could be used to support navigation. We conclude that SAR altimeter measurements can be valuable to operational ice charting if other data sources are unavailable.
S. Kern, K. Khvorostovsky, H. Skourup, E. Rinne, Z. S. Parsakhoo, V. Djepa, P. Wadhams, and S. Sandven
The Cryosphere, 9, 37–52, https://doi.org/10.5194/tc-9-37-2015, https://doi.org/10.5194/tc-9-37-2015, 2015
Short summary
Short summary
Snow depth and ice density are equally important parameters for sea ice thickness retrieval from radar altimetry of Arctic sea ice. Development of a new snow depth data set is mandatory as the Warren snow depth climatology does not represent the actual snow depth distribution. An optimal choice of ice density can be realized by including ice type and degree of deformation. Retrieval and validation enhancement requires more contemporary ice freeboard, thickness, and density and snow depth data.
Related subject area
Discipline: Sea ice | Subject: Remote Sensing
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Aerial observations of sea ice breakup by ship waves
Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery
The effects of surface roughness on the calculated, spectral, conical–conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice
Inter-comparison and evaluation of Arctic sea ice type products
A simple model for daily basin-wide thermodynamic sea ice thickness growth retrieval
Ice ridge density signatures in high-resolution SAR images
Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
Quantifying the effects of background concentrations of crude oil pollution on sea ice albedo
Assessment of Arctic Sea Ice Thickness Retrieval Ability of the Chinese HY-2B Radar Altimeter
Observing sea ice flexural-gravity waves with ground-based radar interferometry
Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity
Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements
Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry
Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images
Satellite altimetry detection of ice-shelf-influenced fast ice
MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission
Spaceborne infrared imagery for early detection of Weddell Polynya opening
Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony
Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning
An improved sea ice detection algorithm using MODIS: application as a new European sea ice extent indicator
Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover
Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice
Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery
Spring melt pond fraction in the Canadian Arctic Archipelago predicted from RADARSAT-2
Simultaneous estimation of wintertime sea ice thickness and snow depth from space-borne freeboard measurements
Observations of sea ice melt from Operation IceBridge imagery
Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays
Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations
Classification of sea ice types in Sentinel-1 synthetic aperture radar images
A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data
Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions
Opportunistic evaluation of modelled sea ice drift using passively drifting telemetry collars in Hudson Bay, Canada
Combining TerraSAR-X and time-lapse photography for seasonal sea ice monitoring: the case of Deception Bay, Nunavik
Satellite observations of unprecedented phytoplankton blooms in the Maud Rise polynya, Southern Ocean
Effects of decimetre-scale surface roughness on L-band brightness temperature of sea ice
Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates
Broadband albedo of Arctic sea ice from MERIS optical data
Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations
Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison
The 2018 North Greenland polynya observed by a newly introduced merged optical and passive microwave sea-ice concentration dataset
Estimation of turbulent heat flux over leads using satellite thermal images
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023, https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Short summary
Sea ice maps are produced to cover the MOSAiC Arctic expedition (2019–2020) and divide sea ice into scientifically meaningful classes. We use a high-resolution X-band synthetic aperture radar dataset and show how image brightness and texture systematically vary across the images. We use an algorithm that reliably corrects this effect and achieve good results, as evaluated by comparisons to ground observations and other studies. The sea ice maps are useful as a basis for future MOSAiC studies.
Elie Dumas-Lefebvre and Dany Dumont
The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023, https://doi.org/10.5194/tc-17-827-2023, 2023
Short summary
Short summary
By changing the shape of ice floes, wave-induced sea ice breakup dramatically affects the large-scale dynamics of sea ice. As this process is also the trigger of multiple others, it was deemed relevant to study how breakup itself affects the ice floe size distribution. To do so, a ship sailed close to ice floes, and the breakup that it generated was recorded with a drone. The obtained data shed light on the underlying physics of wave-induced sea ice breakup.
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023, https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
Short summary
Thinning sea ice has significant impacts on the energy exchange between the atmosphere and the ocean. In this study we present visual and quantitative comparisons of thin-ice detections obtained from classified Cryosat-2 radar reflections and thin-ice-thickness estimates derived from MODIS thermal-infrared imagery. In addition to good comparability, the results of the study indicate the potential for a deeper understanding of sea ice in the polar seas and improved processing of altimeter data.
Maxim L. Lamare, John D. Hedley, and Martin D. King
The Cryosphere, 17, 737–751, https://doi.org/10.5194/tc-17-737-2023, https://doi.org/10.5194/tc-17-737-2023, 2023
Short summary
Short summary
The reflectivity of sea ice is crucial for modern climate change and for monitoring sea ice from satellites. The reflectivity depends on the angle at which the ice is viewed and the angle illuminated. The directional reflectivity is calculated as a function of viewing angle, illuminating angle, thickness, wavelength and surface roughness. Roughness cannot be considered independent of thickness, illumination angle and the wavelength. Remote sensors will use the data to image sea ice from space.
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023, https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
Short summary
Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. This study gives a systematic inter-comparison and evaluation of eight SITY products. Main results include differences in SITY products being significant, with average Arctic multiyear ice extent up to 1.8×106 km2; Ku-band scatterometer SITY products generally performing better; and factors such as satellite inputs, classification methods, training datasets and post-processing highly impacting their performance.
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 16, 4403–4421, https://doi.org/10.5194/tc-16-4403-2022, https://doi.org/10.5194/tc-16-4403-2022, 2022
Short summary
Short summary
A prominent part of the polar climate system is sea ice, a better understanding of which would lead to better understanding Earth's climate. Newly published methods for observing the temperature of sea ice have made possible a new method for estimating daily sea ice thickness growth from space using an energy balance. The method compares well with existing sea ice thickness observations.
Mikko Lensu and Markku Similä
The Cryosphere, 16, 4363–4377, https://doi.org/10.5194/tc-16-4363-2022, https://doi.org/10.5194/tc-16-4363-2022, 2022
Short summary
Short summary
Ice ridges form a compressing ice cover. From above they appear as walls of up to few metres in height and extend even kilometres across the ice. Below they may reach tens of metres under the sea surface. Ridges need to be observed for the purposes of ice forecasting and ice information production. This relies mostly on ridging signatures discernible in radar satellite (SAR) images. New methods to quantify ridging from SAR have been developed and are shown to agree with field observations.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Benjamin Heikki Redmond Roche and Martin D. King
The Cryosphere, 16, 3949–3970, https://doi.org/10.5194/tc-16-3949-2022, https://doi.org/10.5194/tc-16-3949-2022, 2022
Short summary
Short summary
Sea ice is bright, playing an important role in reflecting incoming solar radiation. The reflectivity of sea ice is affected by the presence of pollutants, such as crude oil, even at low concentrations. Modelling how the brightness of three types of sea ice is affected by increasing concentrations of crude oils shows that the type of oil, the type of ice, the thickness of the ice, and the size of the oil droplets are important factors. This shows that sea ice is vulnerable to oil pollution.
Zhaoqing Dong, Lijian Shi, Mingsen Lin, Tao Zeng, and Suhui Wu
EGUsphere, https://doi.org/10.5194/egusphere-2022-870, https://doi.org/10.5194/egusphere-2022-870, 2022
Short summary
Short summary
With the development of satellite altimeters, satellite altimeter technologies have been increasingly used to retrieve Arctic sea ice thicknesses and have achieved rapid application. However, few reports have explored the retrieval of sea ice thickness by Chinese altimeters among recent studies. Therefore, it is of great significance to obtain reliable Arctic sea ice thickness products based on the China HY-2B radar altimeter to provide data support for the study of long-term changes in sea ice.
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-128, https://doi.org/10.5194/tc-2022-128, 2022
Revised manuscript accepted for TC
Short summary
Short summary
We investigate the Gamma Portable Radar Interferometer (GPRI) as a tool for evaluating flexural-gravity waves in sea ice in near real time. With a GPRI mounted on grounded ice near Utqiaġvik, Alaska, we identify 20 to 50-second infragravity waves in landfast ice with ~1 mm amplitude during 23–24 Apr 2021. Observed wave speed and periods compare well with modeled wave propagation and on-ice accelerometers confirming the ability to track propagation and properties of waves over hundreds of meters.
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022, https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Short summary
Arctic sea ice has a distribution of ice sizes that provides insight into the physics of the ice. We examine this distribution from satellite imagery from 1999 to 2014 in the Canada Basin. We find that it appears as a power law whose power becomes less negative with increasing ice concentrations and has a seasonality tied to that of ice concentration. Results suggest ice concentration be considered in models of this distribution and are important for understanding sea ice in a warming Arctic.
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022, https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022, https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary
Short summary
Ice motion can be used to better understand how weather and climate change affect the ice. Antarctic sea ice extent has shown large variability over the observed period, and dynamical features may also have changed. Our method allows for the quantification of rotational motion caused by wind and how this may have changed with time. Cyclonic motion dominates the Atlantic sector, particularly from 2015 onwards, while anticyclonic motion has remained comparatively small and unchanged.
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022, https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary
Short summary
High-resolution clear-sky optical satellite imagery has rarely been used to evaluate satellite passive microwave sea-ice concentration products beyond case-study level. By comparing 10 such products with sea-ice concentration estimated from > 350 such optical images in both hemispheres, we expand results of earlier evaluation studies for these products. Results stress the need to look beyond precision and accuracy and to discuss the evaluation data’s quality and filters applied in the products.
Wenkai Guo, Polona Itkin, Johannes Lohse, Malin Johansson, and Anthony Paul Doulgeris
The Cryosphere, 16, 237–257, https://doi.org/10.5194/tc-16-237-2022, https://doi.org/10.5194/tc-16-237-2022, 2022
Short summary
Short summary
This study uses radar satellite data categorized into different sea ice types to detect ice deformation, which is significant for climate science and ship navigation. For this, we examine radar signal differences of sea ice between two similar satellite sensors and show an optimal way to apply categorization methods across sensors, so more data can be used for this purpose. This study provides a basis for future reliable and constant detection of ice deformation remotely through satellite data.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Lanqing Huang, Georg Fischer, and Irena Hajnsek
The Cryosphere, 15, 5323–5344, https://doi.org/10.5194/tc-15-5323-2021, https://doi.org/10.5194/tc-15-5323-2021, 2021
Short summary
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021, https://doi.org/10.5194/tc-15-4527-2021, 2021
Short summary
Short summary
Linear-like openings in sea ice, also called leads, occur with widths from meters to kilometers. We use satellite images from Sentinel-2 with a resolution of 10 m to identify leads and measure their widths. With that we investigate the frequency of lead widths using two different statistical methods, since other studies have shown a dependency of heat exchange on the lead width. We are the first to address the sea-ice lead-width distribution in the Weddell Sea, Antarctica.
Gemma M. Brett, Daniel Price, Wolfgang Rack, and Patricia J. Langhorne
The Cryosphere, 15, 4099–4115, https://doi.org/10.5194/tc-15-4099-2021, https://doi.org/10.5194/tc-15-4099-2021, 2021
Short summary
Short summary
Ice shelf meltwater in the surface ocean affects sea ice formation, causing it to be thicker and, in particular conditions, to have a loose mass of platelet ice crystals called a sub‐ice platelet layer beneath. This causes the sea ice freeboard to stand higher above sea level. In this study, we demonstrate for the first time that the signature of ice shelf meltwater in the surface ocean manifesting as higher sea ice freeboard in McMurdo Sound is detectable from space using satellite technology.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021, https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Zhixiang Yin, Xiaodong Li, Yong Ge, Cheng Shang, Xinyan Li, Yun Du, and Feng Ling
The Cryosphere, 15, 2835–2856, https://doi.org/10.5194/tc-15-2835-2021, https://doi.org/10.5194/tc-15-2835-2021, 2021
Short summary
Short summary
MODIS thermal infrared (TIR) imagery provides promising data to study the rapid variations in the Arctic turbulent heat flux (THF). The accuracy of estimated THF, however, is low (especially for small leads) due to the coarse resolution of the MODIS TIR data. We train a deep neural network to enhance the spatial resolution of estimated THF over leads from MODIS TIR imagery. The method is found to be effective and can generate a result which is close to that derived from Landsat-8 TIR imagery.
Joan Antoni Parera-Portell, Raquel Ubach, and Charles Gignac
The Cryosphere, 15, 2803–2818, https://doi.org/10.5194/tc-15-2803-2021, https://doi.org/10.5194/tc-15-2803-2021, 2021
Short summary
Short summary
We describe a new method to map sea ice and water at 500 m resolution using data acquired by the MODIS sensors. The strength of this method is that it achieves high-accuracy results and is capable of attenuating unwanted resolution-breaking effects caused by cloud masking. Our resulting March and September monthly aggregates reflect the loss of sea ice in the European Arctic during the 2000–2019 period and show the algorithm's usefulness as a sea ice monitoring tool.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021, https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Short summary
Ice navigators rely on timely information about ice conditions to ensure safe passage through ice-covered waters, and one parameter, the degree of ice ridging (DIR), is particularly useful. We have investigated the possibility of estimating DIR from the geolocated photons of ICESat-2 (IS2) in the Bay of Bothnia, show that IS2 retrievals from different DIR areas differ significantly, and present some of the first steps in creating sea ice applications beyond e.g. thickness retrieval.
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021, https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Short summary
Convergent sea ice motion produces a thick ice cover through ridging. We studied sea ice deformation derived from high-resolution satellite imagery and related it to the corresponding thickness change. We found that deformation explains the observed dynamic thickness change. We show that deformation can be used to model realistic ice thickness distributions. Our results revealed new relationships between thickness redistribution and deformation that could improve sea ice models.
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021, https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
Stephan Paul and Marcus Huntemann
The Cryosphere, 15, 1551–1565, https://doi.org/10.5194/tc-15-1551-2021, https://doi.org/10.5194/tc-15-1551-2021, 2021
Short summary
Short summary
Cloud cover in the polar regions is difficult to identify at night when using only thermal-infrared data. This is due to occurrences of warm clouds over cold sea ice and cold clouds over warm sea ice. Especially the standard MODIS cloud mask frequently tends towards classifying open water and/or thin ice as cloud cover. Using a neural network, we present an improved discrimination between sea-ice, open-water and/or thin-ice, and cloud pixels in nighttime MODIS thermal-infrared satellite data.
Stephen E. L. Howell, Randall K. Scharien, Jack Landy, and Mike Brady
The Cryosphere, 14, 4675–4686, https://doi.org/10.5194/tc-14-4675-2020, https://doi.org/10.5194/tc-14-4675-2020, 2020
Short summary
Short summary
Melt ponds form on the surface of Arctic sea ice during spring and have been shown to exert a strong influence on summer sea ice area. Here, we use RADARSAT-2 satellite imagery to estimate the predicted peak spring melt pond fraction in the Canadian Arctic Archipelago from 2009–2018. Our results show that RADARSAT-2 estimates of peak melt pond fraction can be used to provide predictive information about summer sea ice area within certain regions of the Canadian Arctic Archipelago.
Hoyeon Shi, Byung-Ju Sohn, Gorm Dybkjær, Rasmus Tage Tonboe, and Sang-Moo Lee
The Cryosphere, 14, 3761–3783, https://doi.org/10.5194/tc-14-3761-2020, https://doi.org/10.5194/tc-14-3761-2020, 2020
Short summary
Short summary
To estimate sea ice thickness from satellite freeboard measurements, snow depth information has been required; however, the snow depth estimate has been considered largely uncertain. We propose a new method to estimate sea ice thickness and snow depth simultaneously from freeboards by imposing a thermodynamic constraint. Obtained ice thicknesses and snow depths were consistent with airborne measurements, suggesting that uncertainty of ice thickness caused by uncertain snow depth can be reduced.
Nicholas C. Wright, Chris M. Polashenski, Scott T. McMichael, and Ross A. Beyer
The Cryosphere, 14, 3523–3536, https://doi.org/10.5194/tc-14-3523-2020, https://doi.org/10.5194/tc-14-3523-2020, 2020
Short summary
Short summary
This work presents a new dataset of sea ice surface fractions along NASA Operation IceBridge flight tracks created by processing hundreds of thousands of aerial images. These results are then analyzed to investigate the behavior of meltwater on first-year ice in comparison to multiyear ice. We find preliminary evidence that first-year ice frequently has a lower melt pond fraction than adjacent multiyear ice, contrary to established knowledge in the sea ice community.
Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings
The Cryosphere, 14, 2999–3016, https://doi.org/10.5194/tc-14-2999-2020, https://doi.org/10.5194/tc-14-2999-2020, 2020
Short summary
Short summary
Monitoring deformation of sea ice is useful for studying effects of ice compression and divergent motion on the ice mass balance and ocean–ice–atmosphere interactions. In calculations of deformation parameters not only the measurement uncertainty of drift vectors has to be considered. The size of the area and the time interval used in the calculations have to be chosen within certain limits to make sure that the uncertainties of deformation parameters are smaller than their real magnitudes.
Igor E. Kozlov, Evgeny V. Plotnikov, and Georgy E. Manucharyan
The Cryosphere, 14, 2941–2947, https://doi.org/10.5194/tc-14-2941-2020, https://doi.org/10.5194/tc-14-2941-2020, 2020
Short summary
Short summary
Here we demonstrate a recently emerged opportunity to retrieve high-resolution surface current velocities from sequential spaceborne radar images taken over low-concentration ice regions of polar oceans. Such regularly available data uniquely resolve complex surface ocean dynamics even at small scales and can be used in operational applications to assess and predict transport and distribution of biogeochemical substances and pollutants in ice-covered waters.
Jeong-Won Park, Anton Andreevich Korosov, Mohamed Babiker, Joong-Sun Won, Morten Wergeland Hansen, and Hyun-Cheol Kim
The Cryosphere, 14, 2629–2645, https://doi.org/10.5194/tc-14-2629-2020, https://doi.org/10.5194/tc-14-2629-2020, 2020
Short summary
Short summary
A new Sentinel-1 radar-based sea ice classification algorithm is proposed. We show that the readily available ice charts from operational ice services can reduce the amount of manual work in preparation of large amounts of training/testing data and feed highly reliable data to the trainer in an efficient way. Test results showed that the classifier is capable of retrieving three generalized cover types with overall accuracy of 87 % and 67 % in the winter and summer seasons, respectively.
Marcel König and Natascha Oppelt
The Cryosphere, 14, 2567–2579, https://doi.org/10.5194/tc-14-2567-2020, https://doi.org/10.5194/tc-14-2567-2020, 2020
Short summary
Short summary
We used data that we collected on RV Polarstern cruise PS106 in summer 2017 to develop a model for the derivation of melt pond depth on Arctic sea ice from reflectance measurements. We simulated reflectances of melt ponds of varying color and water depth and used the sun zenith angle and the slope of the log-scaled reflectance at 710 nm to derive pond depth. We validated the model on the in situ melt pond data and found it to derive pond depth very accurately.
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, and Rasmus Tonboe
The Cryosphere, 14, 2469–2493, https://doi.org/10.5194/tc-14-2469-2020, https://doi.org/10.5194/tc-14-2469-2020, 2020
Short summary
Short summary
Arctic sea-ice concentration (SIC) estimates based on satellite passive microwave observations are highly inaccurate during summer melt. We compare 10 different SIC products with independent satellite data of true SIC and melt pond fraction (MPF). All products disagree with the true SIC. Regional and inter-product differences can be large and depend on the MPF. An inadequate treatment of melting snow and melt ponds in the products’ algorithms appears to be the main explanation for our findings.
Ron R. Togunov, Natasha J. Klappstein, Nicholas J. Lunn, Andrew E. Derocher, and Marie Auger-Méthé
The Cryosphere, 14, 1937–1950, https://doi.org/10.5194/tc-14-1937-2020, https://doi.org/10.5194/tc-14-1937-2020, 2020
Short summary
Short summary
Sea ice drift affects important geophysical and biological processes in the Arctic. Using the motion of dropped polar bear GPS collars, our study evaluated the accuracy of a popular satellite-based ice drift model in Hudson Bay. We observed that velocity was underestimated, particularly at higher speeds. Direction was unbiased, but it was less precise at lower speeds. These biases should be accounted for in climate and ecological research relying on accurate/absolute drift velocities.
Sophie Dufour-Beauséjour, Anna Wendleder, Yves Gauthier, Monique Bernier, Jimmy Poulin, Véronique Gilbert, Juupi Tuniq, Amélie Rouleau, and Achim Roth
The Cryosphere, 14, 1595–1609, https://doi.org/10.5194/tc-14-1595-2020, https://doi.org/10.5194/tc-14-1595-2020, 2020
Short summary
Short summary
Inuit have reported greater variability in seasonal sea ice conditions. For Deception Bay (Nunavik), an area prized for seal and caribou hunting, an increase in snow precipitation and a shorter snow cover period is expected in the near future. In this context, and considering ice-breaking transport in the fjord by mining companies, we combined satellite images and time-lapse photography to monitor sea ice in the area between 2015 and 2018.
Babula Jena and Anilkumar N. Pillai
The Cryosphere, 14, 1385–1398, https://doi.org/10.5194/tc-14-1385-2020, https://doi.org/10.5194/tc-14-1385-2020, 2020
Short summary
Short summary
Records of multiple ocean color satellite data indicated unprecedented phytoplankton blooms on the Maud Rise with a backdrop of anomalous upper ocean warming and sea ice loss in 2017. The bloom appearance may indicate it as a potential sink of atmospheric CO2 through biological pumping, and it can be a major source of carbon and energy for the regional food web. The reoccurrence of the bloom is important considering the high-nutrient low-chlorophyll conditions of the Southern Ocean.
Maciej Miernecki, Lars Kaleschke, Nina Maaß, Stefan Hendricks, and Sten Schmidl Søbjærg
The Cryosphere, 14, 461–476, https://doi.org/10.5194/tc-14-461-2020, https://doi.org/10.5194/tc-14-461-2020, 2020
Robbie D. C. Mallett, Isobel R. Lawrence, Julienne C. Stroeve, Jack C. Landy, and Michel Tsamados
The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, https://doi.org/10.5194/tc-14-251-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes and how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall are dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when studying soil carbon storage in the Andes.
Christine Pohl, Larysa Istomina, Steffen Tietsche, Evelyn Jäkel, Johannes Stapf, Gunnar Spreen, and Georg Heygster
The Cryosphere, 14, 165–182, https://doi.org/10.5194/tc-14-165-2020, https://doi.org/10.5194/tc-14-165-2020, 2020
Short summary
Short summary
A spectral to broadband conversion is developed empirically that can be used in combination with the Melt Pond Detector algorithm to derive broadband albedo (300–3000 nm) of Arctic sea ice from MERIS data. It is validated and shows better performance compared to existing conversion methods. A comparison of MERIS broadband albedo with respective values from ERA5 reanalysis suggests a revision of the albedo values used in ERA5. MERIS albedo might be useful for improving albedo representation.
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, Rasmus Tage Tonboe, Roberto Saldo, and Atle MacDonald Sørensen
The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019, https://doi.org/10.5194/tc-13-3261-2019, 2019
Short summary
Short summary
A systematic evaluation of 10 global satellite data products of the polar sea-ice area is performed. Inter-product differences in evaluation results call for careful consideration of data product limitations when performing sea-ice area trend analyses and for further mitigation of the effects of sensor changes. We open a discussion about evaluation strategies for such data products near-0 % and near-100 % sea-ice concentration, e.g. with the aim to improve high-concentration evaluation accuracy.
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885, https://doi.org/10.5194/tc-13-2869-2019, https://doi.org/10.5194/tc-13-2869-2019, 2019
Short summary
Short summary
Changes in the floe size distribution (FSD) are important for sea ice evolution but to date largely unobserved and unknown. Climate models, forecast centres, ship captains, and logistic specialists cannot currently obtain statistical information about sea ice floe size on demand. We develop a new method to observe the FSD at global scales and high temporal and spatial resolution. With refinement, this method can provide crucial information for polar ship routing and real-time forecasting.
Valentin Ludwig, Gunnar Spreen, Christian Haas, Larysa Istomina, Frank Kauker, and Dmitrii Murashkin
The Cryosphere, 13, 2051–2073, https://doi.org/10.5194/tc-13-2051-2019, https://doi.org/10.5194/tc-13-2051-2019, 2019
Short summary
Short summary
Sea-ice concentration, the fraction of an area covered by sea ice, can be observed from satellites with different methods. We combine two methods to obtain a product which is better than either of the input measurements alone. The benefit of our product is demonstrated by observing the formation of an open water area which can now be observed with more detail. Additionally, we find that the open water area formed because the sea ice drifted in the opposite direction and faster than usual.
Meng Qu, Xiaoping Pang, Xi Zhao, Jinlun Zhang, Qing Ji, and Pei Fan
The Cryosphere, 13, 1565–1582, https://doi.org/10.5194/tc-13-1565-2019, https://doi.org/10.5194/tc-13-1565-2019, 2019
Short summary
Short summary
Can we ignore the contribution of small ice leads when estimating turbulent heat flux? Combining bulk formulae and a fetch-limited model with surface temperature from MODIS and Landsat-8 Thermal Infrared Sensor (TIRS) images, we found small leads account for 25 % of the turbulent heat flux, due to its large total area. Estimated turbulent heat flux is larger from TIRS than that from MODIS with a coarser resolution and larger using a fetch-limited model than that using bulk formulae.
Cited articles
Allard, R. A., Farrell, S. L., Hebert, D. H., Johnston, W. F., Li, L., Kurtz,
N. T., Phelps, M. W., Posey, P. G., Tilling, R., Ridout, A., and Wallcraft,
A. L.: Utilizing CryoSat-2 sea ice thickness to initialize a coupled
ice-ocean modeling system, Adv. Space Res., 62, 1265–1280,
https://doi.org/10.1016/j.asr.2017.12.030, 2018.
Armitage, T. W. K and Ridout, A. L.: Arctic sea ice freeboard from AltiKa and
comparison with CryoSat-2 and Operation IceBridge, Geophys. Res. Lett., 42,
6724–6731, https://doi.org/10.1002/2015GL064823, 2015.
Belward, A. and Dowell, M. (Eds.): The Global Observing System for Climate
(GCOS): Implementation Needs, GCOS 2016 Implementation Plan, Global Ocean
Observing System Report (GCOS 200, GOOS 214), World Meteorological
Organisation, 341, available at:
https://library.wmo.int/opac/doc_num.php?explnum_id=3417 (last access:
November 2018), 2016.
Blanchard-Wrigglesworth, E., Farrell, S., Newman, T., and Bitz, C.: Snow
cover on Arctic sea ice in observations and an Earth system model, Geophys.
Res. Lett., 42, 10342–10348. https://doi.org/10.1002/2015GL066049, 2015.
Blanchard-Wrigglesworth, E., Webster, M. A., Farrell, S. L., and Bitz, C. M.:
Reconstruction of Snow on Arctic Sea Ice, J. Geophys. Res.-Oceans, 123,
3588–3602, https://doi.org/10.1002/2017JC013364, 2018.
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal
predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The
Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018.
Brucker, L. and Markus, T.: Arctic-scale assessment of satellite passive
microwave-derived snow depth on sea ice using Operation IceBridge airborne
data, J. Geophys. Res.-Oceans, 118, 2892–2905, https://doi.org/10.1002/jgrc.20228, 2013.
Connor L. N., Laxon S. W., McAdoo D. C., Ridout A., Cullen R., Farrell S.,
and Francis R.: Arctic sea ice freeboard from CryoSat-2: Validation using
data from the first IceBridge underflight, AGU Fall Meeting Abstracts,
December 2011, San Francisco, CA, USA, C53F-04, 2011.
Farrell, S. L., Kurtz, N., Connor, L. N., Elder, B. C., Leuschen, C., Markus,
T., McAdoo, D. C., Panzer, B., Richter-Menge, J., and Sonntag, J.G.: A first
assessment of IceBridge snow and ice thickness data over Arctic sea ice, IEEE
T. Geosci. Remote, 50, 2098–2111, 2012.
Giles, K. A., Laxon, S. W., Wingham, D. J., Wallis, D. W., Krabill, W. B.,
Leuschen, C. J., McAdoo, D., Manizade, S. S., and Raney, R. K.: Combined
airborne laser and radar altimeter measurements over the Fram Strait in May
2002, Remote Sens. Environ., 111, 182–194, 2007.
Giles, K. A., Laxon, S. W., and Ridout, A. L.: Circumpolar thinning of Arctic
sea ice following the 2007 record ice extent minimum, Geophys. Res. Lett.,
35, L22502, https://doi.org/10.1029/2008GL035710, 2008.
Grosfeld, K., Treffeisen, R., Asseng, J., Bartsch, A., Bräuer, B.,
Fritzsch, B., Gerdes, R., Hendricks, S., Hiller, W., Heygster, G., Krumpen,
T., Lemke, P., Melsheimer, C., Nicolaus, M., Ricker, R., and Weigelt, M.:
Online sea-ice knowledge and data platform
www.meereisportal.de, Polarforschung,
Bremerhaven, Alfred Wegener Institute for Polar and Marine Research &
German Society of Polar Research, 85, 143–155,
https://doi.org/10.2312/polfor.2016.011, 2016.
Guerreiro, K., Fleury, S., Zakharova, E., Rémy, F., and Kouraev, A.:
Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and
SARAL/AltiKa missions, Remote Sens. Environ., 186, 339–349,
https://doi.org/10.1016/j.rse.2016.07.013, 2016.
Guerreiro, K., Fleury, S., Zakharova, E., Kouraev, A., Rémy, F., and
Maisongrande, P.: Comparison of CryoSat-2 and ENVISAT radar freeboard over
Arctic sea ice: toward an improved Envisat freeboard retrieval, The
Cryosphere, 11, 2059–2073, https://doi.org/10.5194/tc-11-2059-2017, 2017.
Hendricks, S.: Sea Ice Climate Change Initiative Phase 2, D3.4 Product User
Guide (PUG) for Sea Ice Thickness Dataset, SICCI-SIT-PUG-P2-17-02, v.1.0,
16 pp., available at:
http://data.ceda.ac.uk/neodc/esacci/sea_ice/docs/SICCI_P2_SIT_PUG_D3.3_Issue_1.0.pdf
(last access: January 2019), 2017.
Hendricks, S., Ricker, R., and Helm, V.: User Guide – AWI CryoSat-2 Sea Ice
Thickness Data Product (v1.2), https://doi.org/10013/epic.48201, 2016.
Hendricks, S., Paul, S., and Rinne, E.: ESA Sea Ice Climate Change Initiative
(Sea_Ice_cci): Northern hemisphere sea ice thickness from the CryoSat-2
satellite on a monthly grid (L3C), v2.0. Centre for Environmental Data
Analysis, https://doi.org/10.5285/ff79d140824f42dd92b204b4f1e9e7c2, 2018.
Kaleschke, L., Tian-Kunze, X., Maaß, N., Makynen, M., and Drusch, M.: Sea
ice thickness retrieval from SMOS brightness temperatures during the Arctic
freeze-up period, Geophys. Res. Lett., 39, L05501, https://doi.org/10.1029/2012GL050916,
2012.
Kaleschke, L., Tian-Kunze, X., Maaß, N., Beitsch, A., Wernecke, A.,
Miernecki, M., Müller, G., Fock, B. H., Gierisch, A. M. U.,
Schlünzen, K. H., Pohlmann, T., Dobrynin, M., Hendricks, S., Asseng, J.,
Gerdes, R., Jochmann, P., Reimer, N., Holfort, J., Melsheimer, C., Heygster,
G., Spreen, G., Gerland, S., King, J., Skou, N., Søbjærg, S. S., Haas,
C., Richter, F., and Casal, T.: SMOS sea ice product: Operational application
and validation in the Barents Sea marginal ice zone, Remote Sens. Environ.,
180, 264–273, https://doi.org/10.1016/j.rse.2016.03.009, 2016.
Key, J. and Wang, X.: Extended AVHRR Polar Pathfinder (APP-x) Climate
Algorithm Theoretical Basis Document, NOAA Climate Data Record Program,
National Oceanic and Atmospheric Administration (NOAA) National Centers for
Environmental Information (NCEI), Asheville, NC, USA, CDRP-ATBD-0573,
01B-24b, Rev. 1, 82, 2015.
Key, J. R., Mahoney, R., Liu, Y., Romanov, P., Tschudi, M., Appel, I.,
Maslanik, J., Baldwin, D., Wang, X., and Meade, P.: Snow and ice products
from Suomi NPP VIIRS, J. Geophys. Res.-Atmos., 118, 12816–12830,
https://doi.org/10.1002/2013JD020459, 2013.
Key, J., Wang, X., Liu, Y., and NOAA CDR Program: NOAA Climate Data Record of
AVHRR Polar Pathfinder Extended (APP-X), Version 1 [October–April,
2010–2018]. NOAA National Centers for Environmental Information,
https://doi.org/10.7289/V5MK69W6 (last access: November 2018), 2014.
King, J., Howell, S., Derksen, C., Rutter, N., Toose, P., Beckers, J. F.,
Haas, C., Kurtz, N., and Richter-Menge, J.: Evaluation of Operation IceBridge
quick-look snow depth estimates on sea ice, Geophys. Res. Lett., 42,
9302–9310, 2015.
Koenig, L., Martin, S., Studinger, M., and Sonntag, J.: Polar airborne
observations fill gap in satellite data, Eos, Transactions American
Geophysical Union, 91, 333–334, 2010.
Krishfield, R. A. and Proshutinsky, A.: BGOS ULS Data Processing Procedure.
Woods Hole Oceanographic Institute report, available at:
http://www.whoi.edu/fileserver.do?id=85684&pt=2&p=100409 (last access:
November 2018), 2006.
Krishfield, R. A., Proshutinsky, A., Tateyama, K., Williams, W. J., Carmack,
E. C., McLaughlin, F. A., and Timmermans, M. L.: Deterioration of perennial
sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic
freshwater cycle, J. Geophys. Res.-Oceans, 119, 1271–1305, 2014.
Kurtz, N.: IceBridge Sea Ice Freeboard, Snow Depth, and Thickness Quick Look,
Version 1 [March–April, 2012–2017], NASA National Snow and Ice Data Center
Distributed Active Archive Center, Boulder, Colorado USA, [accessed 2018],
https://doi.org/10.5067/GRIXZ91DE0L9, 2016.
Kurtz, N. and Harbeck, J.: CryoSat-2 Level-4 Sea Ice Elevation, Freeboard,
and Thickness, Version 1 [October–April, 2010–2018], NASA National Snow and
Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA,
[accessed 2018], https://doi.org/10.5067/96JO0KIFDAS8, 2017.
Kurtz, N., Studinger, M., Harbeck, J., Onana, V., and Yi, D.: IceBridge L4
Sea Ice Freeboard, Snow Depth, and Thickness, Version 1 [March–April 2011],
NASA National Snow and Ice Data Center Distributed Active Archive Center,
Boulder, Colorado USA, [accessed 2018], https://doi.org/10.5067/G519SHCKWQV6, 2015.
Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth on Arctic
sea ice from operation IceBridge, Geophys. Res. Lett., 38, L20505,
https://doi.org/10.1029/2011GL049216, 2011.
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P.,
Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness,
freeboard, and snow depth products from Operation IceBridge airborne data,
The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013.
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice
freeboard retrieval algorithm through the use of waveform fitting, The
Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014.
Kwok, R. and Cunningham, G. F.: Variability of Arctic sea ice thickness and
volume from CryoSat-2, Philos. T. Roy. Soc. A., 373, 20140157,
https://doi.org/10.1098/rsta.2014.0157, 2015.
Kwok, R. and Markus, T.: Potential Basin-Scale Estimates of Arctic Snow Depth
with Sea Ice Freeboards from CryoSat-2 and ICESat-2: An Exploratory Analysis,
Adv. Space Res., 62, 1243–1250,, https://doi.org/10.1016/j.asr.2017.09.007, 2018.
Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi,
D.: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008,
J. Geophys. Res.-Oceans, 114, C07005, https://doi.org/10.1029/2009JC005312, 2009.
Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T. W. K., and
Ridout, A. L.: Estimating snow depth over Arctic sea ice from calibrated
dual-frequency radar freeboards, The Cryosphere, 12, 3551–3564,
https://doi.org/10.5194/tc-12-3551-2018, 2018.
Laxon S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R.,
Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S.,
Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates
of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737,
https://doi.org/10.1002/grl.50193, 2013.
Maaß, N., Kaleschke, L., Tian-Kunze, X., and Drusch, M.: Snow thickness
retrieval over thick Arctic sea ice using SMOS satellite data, The
Cryosphere, 7, 1971–1989, https://doi.org/10.5194/tc-7-1971-2013, 2013.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice
melt, onset, freezeup, and melt season length, J. Geophys. Res., 114,
C12024, https://doi.org/10.1029/2009JC005436, 2009.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, C. K., Schutz, B. E., Smith,
B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation Satellite-2
(ICESat-2): Science requirements, concept, and implementation, Remote Sens.
Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Newman, T., Farrell, S. L., Richter-Menge, J., Connor, L. N., Kurtz, N. T.,
Elder, B. C., and McAdoo, D.: Assessment of radar-derived snow depth over
Arctic sea ice, J. Geophys. Res.-Oceans, 119, 8578–8602, 2014.
Parkinson, C. L. and Cavalieri, D. J.: Arctic sea ice variability and trends,
1979–2006, J. Geophys. Res., 113, C07003, https://doi.org/10.1029/2007JC004558, 2008.
Parkinson, C. L. and Comiso, J. C.: On the 2012 record low Arctic sea ice
cover: Combined impact of preconditioning and an August storm, Geophys. Res.
Lett., 40, 1356–1361, https://doi.org/10.1002/grl.50349, 2013.
Paul, S., Hendricks, S., and Rinne, E.: Sea Ice Climate Change Initiative
Phase 2, D2.1 Sea Ice Thickness Algorithm Theoretical Basis Document (ATBD),
SICCI-P2-ATBD(SIT), v.1.0, 50 pp., available at:
https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/ESA_Sea-Ice-ECV_Phase2/SICCI_P2_ATBD_D2.1__SIT__Issue_1.0.pdf
(last access: September 2018), 2017.
Perovich, D. K., Meier, W., Tschudi, M., Farrell, S., Hendricks, S., Gerland,
S., Haas, C., Krumpen, T., Polashenski, C., Ricker, R., and Webster, M.: Sea
ice cover [in “State of the Climate in 2018”], B. Am. Meteorol. Soc., 99,
S147–152, https://doi.org/10.1175/2018BAMSStateoftheClimate.1, 2018.
Price, D., Beckers, J., Ricker, R., Kurtz, N., Rack, W., Haas, C., Helm, V.,
Hendricks, S. Leonard, G., and Langhorne, P. J.: Evaluation of CryoSat-2
derived sea-ice freeboard over fast ice in McMurdo Sound, Antarctica, J.
Glaciol., 61, 285–300, https://doi.org/10.3189/2015JoG14J157, 2015.
Richter-Menge, J. A. and Farrell, S. L.: Arctic sea ice conditions in spring
2009–2013 prior to melt, Geophys. Res. Lett., 40, 5888–5893,
https://doi.org/10.1002/2013GL058011, 2013.
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.:
Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on
radar-waveform interpretation, The Cryosphere, 8, 1607–1622,
https://doi.org/10.5194/tc-8-1607-2014, 2014.
Ricker, R., Hendricks, S., Kaleschke, L., and Tian-Kunze, X.: CS2SMOS User
Guide v3.0, Alfred Wegener Institute, https://doi.org/10013/epic.51136, 2017a.
Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas,
C.: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and
SMOS satellite data, The Cryosphere, 11, 1607–1623,
https://doi.org/10.5194/tc-11-1607-2017, 2017b.
Rostosky, P., Spreen, G., Farrell, S. L., Frost, T., Heygster, G., and
Melsheimer, C.: Snow depth retrieval on Arctic sea ice from passive microwave
radiometers – Improvements and extensions to multiyear ice using lower
frequencies, J. Geophys. Res., 123, 7120–7138, https://doi.org/10.1029/2018JC014028,
2018.
Rothrock, D. A., Percival, D. B., and Wensnahan, M.: The decline in arctic
sea-ice thickness: Separating the spatial, annual, and interannual
variability in a quarter century of submarine data, J. Geophys. Res.-Oceans,
113, C05003, https://doi.org/10.1029/2007JC004252, 2008.
Shalina, E. V. and Sandven, S.: Snow depth on Arctic sea ice from historical
in situ data, The Cryosphere, 12, 1867–1886,
https://doi.org/10.5194/tc-12-1867-2018, 2018.
Shepherd, A., Fricker, H. A., and Farrell S. L.: Trends and connections
across the Antarctic cryosphere, Nature, 558, 223–232, 2018.
Skourup, H., Farrell, S. L., Hendricks, S., Ricker, R., Armitage, T. W. K.,
Ridout, A., Andersen, O. B., Haas, C., and Baker, S.: An assessment of
state-of-the-art mean sea surface and geoid models of the Arctic Ocean:
Implications for sea ice freeboard retrieval, J. Geophys. Res.-Oceans, 122,
8593–8613, https://doi.org/10.1002/2017JC013176, 2017.
Song, M. R.: Change of Arctic sea ice volume and its relationship with sea
ice extent in CMIP5 simulations, Atmos. Ocean. Sci. Lett., 9, 22–30,
https://doi.org/10.1080/16742834.2015.1126153, 2016.
Stroeve, J. C., Schroder, D., Tsamados, M., and Feltham, D.: Warm winter,
thin ice?, The Cryosphere, 12, 1791–1809,
https://doi.org/10.5194/tc-12-1791-2018, 2018.
Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N.,
Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: algorithm
baseline, product specifications and initial verification, The Cryosphere, 8,
997–1018, https://doi.org/10.5194/tc-8-997-2014, 2014.
Tilling, R. L., Ridout, A., Shepherd, A., and Wingham, D.J.: Increased Arctic
sea ice volume after anomalously low melting in 2013, Nat. Geosci., 8,
643–646, https://doi.org/10.1038/NGEO2489, 2015.
Tilling, R. L., Ridout, A., and Shepherd, A.: Near-real-time Arctic sea ice
thickness and volume from CryoSat-2, The Cryosphere, 10, 2003–2012,
https://doi.org/10.5194/tc-10-2003-2016, 2016.
Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice
thickness and volume using CryoSat-2 radar altimeter data, Adv. Space Res.,
62, 1203–1225, https://doi.org/10.1016/j.asr.2017.10.051, 2018.
Wang, X., Key, J. R., and Liu, Y.: A thermodynamic model for estimating sea
and lake ice thickness with optical satellite data, J. Geophys. Res., 115,
C12035, https://doi.org/10.1029/2009JC005857, 2010.
Wang, X., Key, J., Kwok, R., and Zhang, J.: Comparison of Arctic Sea Ice
Thickness from Satellites, Aircraft, and PIOMAS Data, Remote Sens., 8, 713.
https://doi.org/10.3390/rs8090713, 2016.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N.
N., Aleksandrov, Y. I., and Colony, R.: Snow depth on Arctic sea ice, J.
Climate, 12, 1814–1829, 1999.
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D.,
Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos,
C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D.
W.: CryoSat: A mission to determine the fluctuations in Earth's land and
marine ice fields, Adv. Space Res., 37, 841–871,
https://doi.org/10.1016/j.asr.2005.07.027, 2006.
Xia, W. and Xie, H.: Assessing three waveform retrackers on sea ice
freeboard retrieval from Cryosat-2 using Operation IceBridge Airborne
altimetry datasets. Remote Sens. Environ., 204, 456–471, 2018.
Xie, J., Counillon, F., and Bertino, L.: Impact of assimilating a merged
sea-ice thickness from CryoSat-2 and SMOS in the Arctic reanalysis, The
Cryosphere, 12, 3671–3691, https://doi.org/10.5194/tc-12-3671-2018, 2018.
Yang, Q., Losa, S. N., Losch, M., Tian-Kunze, X., Nerger, L., Liu, J.,
Kaleschke, L., and Zhang, Z.: Assimilating SMOS sea ice thickness into a
coupled ice-ocean model using a local SEIK filter, J. Geophys. Res.-Oceans,
119, 6680–6692, https://doi.org/10.1002/2014JC009963, 2014.
Yi, D., Kurtz, N., Harbeck, J., Kwok, R., Hendricks, S., and Ricker, R.:
Comparing Coincident Elevation and Freeboard From IceBridge and Five
Different CryoSat-2 Retrackers, IEEE T. Geosci. Remote, 57, 1219–1229,
https://doi.org/10.1109/TGRS.2018.2865257, 2019.
Short summary
We assess 8 years of sea ice thickness observations derived from measurements of CryoSat-2 (CS2), AVHRR and SMOS satellites, collating key details of primary interest to users. We find a number of differences among data products but find that CS2 measurements are reliable for sea ice thickness, particularly between ~ 0.5 and 4 m. Regional comparisons reveal noticeable differences in ice thickness between products, particularly in the marginal seas in areas of considerable ship traffic.
We assess 8 years of sea ice thickness observations derived from measurements of CryoSat-2...