Articles | Volume 13, issue 4
https://doi.org/10.5194/tc-13-1073-2019
https://doi.org/10.5194/tc-13-1073-2019
Research article
 | 
03 Apr 2019
Research article |  | 03 Apr 2019

Benchmark seasonal prediction skill estimates based on regional indices

John E. Walsh, J. Scott Stewart, and Florence Fetterer

Related authors

Sea ice breakup and freeze-up indicators for users of the Arctic coastal environment
John E. Walsh, Hajo Eicken, Kyle Redilla, and Mark Johnson
The Cryosphere, 16, 4617–4635, https://doi.org/10.5194/tc-16-4617-2022,https://doi.org/10.5194/tc-16-4617-2022, 2022
Short summary
Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations
Rebecca J. Rolph, Andrew R. Mahoney, John Walsh, and Philip A. Loring
The Cryosphere, 12, 1779–1790, https://doi.org/10.5194/tc-12-1779-2018,https://doi.org/10.5194/tc-12-1779-2018, 2018
Short summary
Past, present and future biomes in Beringia: Comparison between simulations and pollen analysis
Kazuyuki Saito, Amy Hendricks, John Walsh, and Nancy Bigelow
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-29,https://doi.org/10.5194/cp-2018-29, 2018
Preprint withdrawn
Short summary
Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M)
Erlend M. Knudsen and John E. Walsh
Geosci. Model Dev., 9, 2335–2355, https://doi.org/10.5194/gmd-9-2335-2016,https://doi.org/10.5194/gmd-9-2335-2016, 2016
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Sea-ice conditions from 1880 to 2017 on the Northeast Greenland continental shelf: a biomarker and observational record comparison
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024,https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
The radiative and geometric properties of melting first-year landfast sea ice in the Arctic
Nathan J. M. Laxague, Christopher J. Zappa, Andrew R. Mahoney, John Goodwin, Cyrus Harris, Robert E. Schaeffer, Roswell Schaeffer Sr., Sarah Betcher, Donna D. W. Hauser, Carson R. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, and Alex Whiting
The Cryosphere, 18, 3297–3313, https://doi.org/10.5194/tc-18-3297-2024,https://doi.org/10.5194/tc-18-3297-2024, 2024
Short summary
Improving short-term sea ice concentration forecasts using deep learning
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024,https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary
Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
The Cryosphere, 18, 1419–1441, https://doi.org/10.5194/tc-18-1419-2024,https://doi.org/10.5194/tc-18-1419-2024, 2024
Short summary
Sea-ice variations and trends during the Common Era in the Atlantic sector of the Arctic Ocean
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024,https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary

Cited articles

Agnew, T. A. and Howell, S.: Comparison of digitized Canadian ice charts and passive microwave sea-ice concentrations, Geoscience and Remote Sensing Symposium, 24–28 June 2002, Toronto, Ontario, Canada, IGARSS '02. 2002 IEEE International, 1, 231–233, https://doi.org/10.1109/IGARSS.2002.1024996, 2002. 
AMAP: Snow, Water, Ice and Permafrost in the Arctic: 2017 Update. Arctic Monitoring and Assessment Programme, Oslo, Norway, xiv + 269 pp., 2017. 
Barnett, D. G.: A long-range ice forecasting method for the north coast of Alaska, Sea Ice Processes and Models, edited by: Pritchard, R., University of Washington Press, Seattle, WA, USA, 402–409, 1980. 
Blanchard-Wrigglesworth, E., Armour, K. C., and Bitz, C. M.: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations, J. Climate, 24, 231–250, 2011. 
Download
Short summary
Persistence-based statistical forecasts of a Beaufort Sea ice severity index as well as September pan-Arctic ice extent show significant statistical skill out to several seasons when the data include the trend. However, this apparent skill largely vanishes when the trends are removed from the data. This finding is consistent with the notion of a springtime “predictability barrier” that has been found in sea ice forecasts based on more sophisticated methods.