Articles | Volume 12, issue 2
The Cryosphere, 12, 433–452, 2018
https://doi.org/10.5194/tc-12-433-2018
The Cryosphere, 12, 433–452, 2018
https://doi.org/10.5194/tc-12-433-2018
Research article
06 Feb 2018
Research article | 06 Feb 2018

The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows

Alek A. Petty et al.

Related authors

Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023,https://doi.org/10.5194/tc-17-127-2023, 2023
Short summary
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021,https://doi.org/10.5194/tc-15-821-2021, 2021
Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021,https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis
Alek A. Petty, Melinda Webster, Linette Boisvert, and Thorsten Markus
Geosci. Model Dev., 11, 4577–4602, https://doi.org/10.5194/gmd-11-4577-2018,https://doi.org/10.5194/gmd-11-4577-2018, 2018
Arctic Ocean surface geostrophic circulation 2003–2014
Thomas W. K. Armitage, Sheldon Bacon, Andy L. Ridout, Alek A. Petty, Steven Wolbach, and Michel Tsamados
The Cryosphere, 11, 1767–1780, https://doi.org/10.5194/tc-11-1767-2017,https://doi.org/10.5194/tc-11-1767-2017, 2017
Short summary

Related subject area

Sea Ice
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023,https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary
Probabilistic spatiotemporal seasonal sea ice presence forecasting using sequence-to-sequence learning and ERA5 data in the Hudson Bay region
Nazanin Asadi, Philippe Lamontagne, Matthew King, Martin Richard, and K. Andrea Scott
The Cryosphere, 16, 3753–3773, https://doi.org/10.5194/tc-16-3753-2022,https://doi.org/10.5194/tc-16-3753-2022, 2022
Short summary
Predictability of Arctic sea ice drift in coupled climate models
Simon Felix Reifenberg and Helge Friedrich Goessling
The Cryosphere, 16, 2927–2946, https://doi.org/10.5194/tc-16-2927-2022,https://doi.org/10.5194/tc-16-2927-2022, 2022
Short summary
Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard
Agathe Serripierri, Ludovic Moreau, Pierre Boue, Jérôme Weiss, and Philippe Roux
The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022,https://doi.org/10.5194/tc-16-2527-2022, 2022
Short summary
A Collection of Wet Beam Models for Wave-Ice Interaction
Sasan Tavakoli and Alexander Babanin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-75,https://doi.org/10.5194/tc-2022-75, 2022
Revised manuscript accepted for TC
Short summary

Cited articles

Anderson, M., Bliss, A. C., and Drobot, S: Snow Melt Onset Over Arctic Sea Ice from SMMR and SSM/I-SSMIS Brightness Temperatures, Version 3 [2000–2016], https://doi.org/10.5067/22NFZL42RMUO, 2014. 
Bliss, A. C. and Anderson, M. R.: Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012, The Cryosphere, 8, 2089–2100, https://doi.org/10.5194/tc-8-2089-2014, 2014. 
Bliss, A. C., Miller, J. A., and Meier, W. N.: Comparison of Passive Microwave-Derived Early Melt Onset Records on Arctic Sea Ice, Remote Sens., 9, 199, https://doi.org/10.3390/rs9030199, 2017. 
Boisvert, L. N., Petty, A. A., and Stroeve, J. C.: The impact of the extreme winter 2015/2016 Arctic cyclone on the Barents-Kara seas, Mon. Weather Rev., 144, 4279–4287, https://doi.org/10.1175/MWR-D-16-0234.1, 2016. 
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 [January 2000–December 20160], NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/8GQ8LZQVL0VL, 1996 (updated 2017). 
Download
Short summary
There was significant scientific and media attention surrounding Arctic sea ice in 2016, due primarily to the record-warm air temperatures and low sea ice conditions observed at the start of the year. Here we quantify and assess the record-low monthly sea ice cover in winter, spring and fall, and the lack of record-low sea ice conditions in summer. We explore the primary drivers of these monthly sea ice states and explore the implications for improved summer sea ice forecasting.