Articles | Volume 12, issue 6
The Cryosphere, 12, 2147–2158, 2018
https://doi.org/10.5194/tc-12-2147-2018
The Cryosphere, 12, 2147–2158, 2018
https://doi.org/10.5194/tc-12-2147-2018

Research article 27 Jun 2018

Research article | 27 Jun 2018

Observations and modelling of algal growth on a snowpack in north-western Greenland

Yukihiko Onuma et al.

Related authors

Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years
Naoko Nagatsuka, Kumiko Goto-Azuma, Akane Tsushima, Koji Fujita, Sumito Matoba, Yukihiko Onuma, Remi Dallmayr, Moe Kadota, Motohiro Hirabayashi, Jun Ogata, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Masahiro Minowa, Yuki Komuro, Hideaki Motoyama, and Teruo Aoki
Clim. Past, 17, 1341–1362, https://doi.org/10.5194/cp-17-1341-2021,https://doi.org/10.5194/cp-17-1341-2021, 2021
Short summary
Physically based model of the contribution of red snow algal cells to temporal changes in albedo in northwest Greenland
Yukihiko Onuma, Nozomu Takeuchi, Sota Tanaka, Naoko Nagatsuka, Masashi Niwano, and Teruo Aoki
The Cryosphere, 14, 2087–2101, https://doi.org/10.5194/tc-14-2087-2020,https://doi.org/10.5194/tc-14-2087-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021,https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Sensitivity of the Greenland surface mass and energy balance to uncertainties in key model parameters
Tobias Zolles and Andreas Born
The Cryosphere, 15, 2917–2938, https://doi.org/10.5194/tc-15-2917-2021,https://doi.org/10.5194/tc-15-2917-2021, 2021
Short summary
Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019)
Paolo Colosio, Marco Tedesco, Roberto Ranzi, and Xavier Fettweis
The Cryosphere, 15, 2623–2646, https://doi.org/10.5194/tc-15-2623-2021,https://doi.org/10.5194/tc-15-2623-2021, 2021
Short summary
Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021,https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
Winter drainage of surface lakes on the Greenland Ice Sheet from Sentinel-1 SAR imagery
Corinne L. Benedek and Ian C. Willis
The Cryosphere, 15, 1587–1606, https://doi.org/10.5194/tc-15-1587-2021,https://doi.org/10.5194/tc-15-1587-2021, 2021
Short summary

Cited articles

Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models, J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011. 
Aoki, T., Kuchiki, K., Niwano, M., Matoba, S., Uetake, J., Masuda K., and Ishimoto, H.: Numerical Simulation of Spectral Albedos of Glacier Surfaces Covered with Glacial Microbes in Northwestern Greenland, in: Radiation processes in the atmosphere and ocean (IRS2012), edited by: Cahalan, R. and Fischer, J., ALP Conf. Proc., 1531, 176, https://doi.org/10.1063/1.4804735, 2013. 
Aoki, T., Matoba, S., Uetake, J., Takeuchi, N., and Motoyama, H.: Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) project in Greenland in 2011–2013, B. Glaciol. Res., 32, 3–20, https://doi.org/10.5331/bgr.32.3, 2014. 
Armstrong, R. L. and Brun, E. (Eds.): Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, Cambridge Univ. Press, Cambridge, UK, 2008. 
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012. 
Download
Short summary
Snow algal bloom can substantially increase melt rates of the snow due to the effect of albedo reduction on the snow surface. In this study, the temporal changes in algal abundance on the snowpacks of Greenland Glacier were studied in order to reproduce snow algal growth using a numerical model. Our study demonstrates that a simple numerical model could simulate the temporal variation in snow algal abundance on the glacier throughout the summer season.