Articles | Volume 12, issue 3
https://doi.org/10.5194/tc-12-1047-2018
https://doi.org/10.5194/tc-12-1047-2018
Research article
 | 
23 Mar 2018
Research article |  | 23 Mar 2018

Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

Felicity S. Graham, Mathieu Morlighem, Roland C. Warner, and Adam Treverrow

Related authors

Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling
Koi McArthur, Felicity S. McCormack, and Christine F. Dow
The Cryosphere, 17, 4705–4727, https://doi.org/10.5194/tc-17-4705-2023,https://doi.org/10.5194/tc-17-4705-2023, 2023
Short summary
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023,https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021)
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere, 16, 4553–4569, https://doi.org/10.5194/tc-16-4553-2022,https://doi.org/10.5194/tc-16-4553-2022, 2022
Short summary
GREB-ISM v1.0: A coupled ice sheet model for the Globally Resolved Energy Balance model for global simulations on timescales of 100 kyr
Zhiang Xie, Dietmar Dommenget, Felicity S. McCormack, and Andrew N. Mackintosh
Geosci. Model Dev., 15, 3691–3719, https://doi.org/10.5194/gmd-15-3691-2022,https://doi.org/10.5194/gmd-15-3691-2022, 2022
Short summary
The temperature change shortcut: effects of mid-experiment temperature changes on the deformation of polycrystalline ice
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021,https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary

Related subject area

Rheology
Grain growth of ice doped with soluble impurities
Qinyu Wang, Sheng Fan, and Chao Qi
The Cryosphere, 18, 1053–1084, https://doi.org/10.5194/tc-18-1053-2024,https://doi.org/10.5194/tc-18-1053-2024, 2024
Short summary
Multivariate state and parameter estimation with data assimilation on sea-ice models using a Maxwell-Elasto-Brittle rheology
Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau
EGUsphere, https://doi.org/10.5194/egusphere-2023-1809,https://doi.org/10.5194/egusphere-2023-1809, 2023
Short summary
Damaging viscous-plastic sea ice
Antoine Savard and Bruno Tremblay
EGUsphere, https://doi.org/10.5194/egusphere-2023-1354,https://doi.org/10.5194/egusphere-2023-1354, 2023
Short summary
The role of grain size evolution in the rheology of ice: implications for reconciling laboratory creep data and the Glen flow law
Mark D. Behn, David L. Goldsby, and Greg Hirth
The Cryosphere, 15, 4589–4605, https://doi.org/10.5194/tc-15-4589-2021,https://doi.org/10.5194/tc-15-4589-2021, 2021
Short summary
Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies
Damien Ringeisen, L. Bruno Tremblay, and Martin Losch
The Cryosphere, 15, 2873–2888, https://doi.org/10.5194/tc-15-2873-2021,https://doi.org/10.5194/tc-15-2873-2021, 2021
Short summary

Cited articles

Azuma, N. and Goto-Azuma, K.: An anisotropic flow law for ice sheet ice and its implications, Ann. Glaciol., 23, 202–208, 1996. a, b
Baker, R.: Is the creep of ice really independent of the third deviatoric stress invariant?, in: The Physical Basis of Ice Sheet Modelling, 7–16, IAHS Publ. 170, 1987. a
Blatter, H.: Velocity And Stress-Fields In Grounded Glaciers: A Simple Algorithm For Including Deviatoric Stress Gradients, J. Glaciol., 41, 333–344, 1995. a
Bouchez, J. and Duval, P.: The fabric of polycrystalline ice deformed in simple shear: Experiments in torsion, natural deformation and geometrical interpretation, Texture Microstruct, 5, 171–190, 1982. a
Breuer, B., Lange, M. A., and Blindow, N.: Sensitivity studies on model modifications to assess the dynamics of a temperature ice cap, such as that on King George Island, Antarctica, J. Glaciol., 52, 235–247, 2006. a
Download
Short summary
Ice sheet flow is anisotropic, depending on the nature of the stress applied. However, most large-scale ice sheet models rely on the Glen flow relation, which ignores anisotropic effects. We implement a flow relation (ESTAR) for anisotropic ice in a large-scale ice sheet model. In ice shelf simulations, the Glen flow relation overestimates velocities by up to 17 % compared with ESTAR. Our results have implications for ice sheet model simulations of paleo-ice extent and sea level rise prediction.