Articles | Volume 11, issue 6
https://doi.org/10.5194/tc-11-2571-2017
https://doi.org/10.5194/tc-11-2571-2017
Research article
 | 
13 Nov 2017
Research article |  | 13 Nov 2017

Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge

Ron Kwok, Nathan T. Kurtz, Ludovic Brucker, Alvaro Ivanoff, Thomas Newman, Sinead L. Farrell, Joshua King, Stephen Howell, Melinda A. Webster, John Paden, Carl Leuschen, Joseph A. MacGregor, Jacqueline Richter-Menge, Jeremy Harbeck, and Mark Tschudi

Related authors

Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021,https://doi.org/10.5194/tc-15-821-2021, 2021
The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness
Sahra Kacimi and Ron Kwok
The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020,https://doi.org/10.5194/tc-14-4453-2020, 2020
Short summary
Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2
Ron Kwok and Sahra Kacimi
The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018,https://doi.org/10.5194/tc-12-2789-2018, 2018
Short summary

Related subject area

Sea Ice
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Jari Haapala, and Arttu Polojärvi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-97,https://doi.org/10.5194/tc-2023-97, 2023
Revised manuscript accepted for TC
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary

Cited articles

Brown, G. S.: A Theory for near-Normal Incidence Microwave-Scattering from 1st-Year Sea Ice, Radio Sci., 17, 233–243, 1982.
Coleman, T. F. and Li, Y.: An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM J. Optimiz., 6, 418–445, 1996.
Farrell, S. L., Kurtz, N., Connor, L. N., Elder, B., Leuschen, C., Markus, T., McAdoo, D., and Sonntag, J.: A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice, IEEE T. Geosci. Remote, 50, 2098–2111, 2012.
Fetterer, F. and Untersteiner, N.: Observations of melt ponds on Arctic sea ice, J. Geophys. Res., 103, 24821–24835, 1998.
Holt, B., Johnson, M. P., Perkovic-Martin, D., and Panzer, B.: Snow depth on Arctic sea ice derived from radar: In situ comparisons and time series analysis, J. Geophys. Res., 120, 4260–4287, 2015.
Download
Short summary
Since 2009, the ultra-wideband snow radar on Operation IceBridge has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Existing snow depth retrieval algorithms differ in the way the air–snow and snow–ice interfaces are detected and localized in the radar returns and in how the system limitations are addressed. Here, we assess five retrieval algorithms by comparisons with field measurements, ground-based campaigns, and analyzed fields of snow depth.