Articles | Volume 11, issue 6
https://doi.org/10.5194/tc-11-2571-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-2571-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California, USA
Nathan T. Kurtz
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA
Ludovic Brucker
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA
Universities Space Research Association, Goddard Earth Sciences Technology and
Research Studies and Investigations, Columbia, MD, USA
Alvaro Ivanoff
ADNET Systems Inc., Lanham, MD, USA
Thomas Newman
Department of Atmospheric Physics, University of Toronto, Toronto, Ontario, Canada
Sinead L. Farrell
Earth System Science Interdisciplinary Center, University of Maryland,
College Park, Maryland, USA
Laboratory for Satellite Altimetry, Satellite Oceanography and
Climatology Division, NOAA Center for Weather and Climate Prediction,
College Park, Maryland, USA
Joshua King
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, Canada
Stephen Howell
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, Canada
Melinda A. Webster
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA
John Paden
Center for Remote Sensing of Ice Sheets, The University of Kansas,
Lawrence, Kansas, USA
Carl Leuschen
Center for Remote Sensing of Ice Sheets, The University of Kansas,
Lawrence, Kansas, USA
Joseph A. MacGregor
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA
Jacqueline Richter-Menge
Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA
Jeremy Harbeck
ADNET Systems Inc., Lanham, MD, USA
Mark Tschudi
Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, Colorado, USA
Related authors
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Sahra Kacimi and Ron Kwok
The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020, https://doi.org/10.5194/tc-14-4453-2020, 2020
Short summary
Short summary
Our current understanding of Antarctic ice cover is largely informed by ice extent measurements from passive microwave sensors. These records, while useful, provide a limited picture of how the ice is responding to climate change. In this paper, we combine measurements from ICESat-2 and CryoSat-2 missions to assess snow depth and ice thickness of the Antarctic ice cover over an 8-month period (April through November 2019). The potential impact of salinity in the snow layer is discussed.
Ron Kwok and Sahra Kacimi
The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, https://doi.org/10.5194/tc-12-2789-2018, 2018
Short summary
Short summary
The variability of snow depth and ice thickness in three years of repeat surveys of an IceBridge (OIB) transect across the Weddell Sea is examined. Retrieved thicknesses suggest a highly variable but broadly thicker ice cover compared to that inferred from drilling and ship-based measurements. The use of lidar and radar altimeters to estimate snow depth for thickness calculations is analyzed, and the need for better characterization of biases due to radar penetration effects is highlighted.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, and Javed Hassan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-348, https://doi.org/10.5194/essd-2024-348, 2024
Preprint under review for ESSD
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and useful for GIS ice sheet modelling.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, and Lekima Yakuden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-227, https://doi.org/10.5194/essd-2024-227, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Sea ice forms a thin boundary between the ocean and the atmosphere, with a complex crust-like dynamics and ever-changing networks of sea ice leads and ridges. Statistics of these dynamical features are often used to evaluate sea ice models. Here, we present a new pan-Arctic dataset of sea ice deformations derived from satellite imagery, from 01 September 2017 to 31 August 2023. We discuss the dataset coverage and some limitations associated with uncertainties in the computed values.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Vigan Mensah, Koji Fujita, Stephen Howell, Miho Ikeda, Mizuki Komatsu, and Kay I. Ohshima
EGUsphere, https://doi.org/10.5194/egusphere-2023-2492, https://doi.org/10.5194/egusphere-2023-2492, 2023
Preprint archived
Short summary
Short summary
We estimated the volume of freshwater released by sea ice, glaciers, rivers, and precipitation into Baffin Bay and the Labrador Sea, and their changes over the past 70 years. We found that the freshwater volume has risen in Baffin Bay due to increased glacier melting, and dropped in the Labrador Sea because of the decline in sea ice production. We also infer that freshwater from the Arctic Ocean has been exported to our study region for the past 30 years, possibly as a result of global warming.
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Steven Fons, Nathan Kurtz, and Marco Bagnardi
The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023, https://doi.org/10.5194/tc-17-2487-2023, 2023
Short summary
Short summary
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and complex snow cover on Antarctic sea ice, estimating the thickness of the ice pack is difficult using traditional methods in radar altimetry. In this work, we use a waveform model to estimate the freeboard and snow depth of Antarctic sea ice from CryoSat-2 and use these values to calculate sea ice thickness and volume between 2010 and 2021 and showcase how the sea ice pack has changed over this time.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Short summary
Information on sea ice surface topography is important for studies of sea ice as well as for ship navigation through ice. The ICESat-2 satellite senses the sea ice surface with six laser beams. To examine the accuracy of these measurements, we carried out a temporally coincident helicopter flight along the same ground track as the satellite and measured the sea ice surface topography with a laser scanner. This showed that ICESat-2 can see even bumps of only few meters in the sea ice cover.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023, https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022, https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Short summary
The 7.4 m of sea level equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice-sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Joseph A. MacGregor, Winnie Chu, William T. Colgan, Mark A. Fahnestock, Denis Felikson, Nanna B. Karlsson, Sophie M. J. Nowicki, and Michael Studinger
The Cryosphere, 16, 3033–3049, https://doi.org/10.5194/tc-16-3033-2022, https://doi.org/10.5194/tc-16-3033-2022, 2022
Short summary
Short summary
Where the bottom of the Greenland Ice Sheet is frozen and where it is thawed is not well known, yet knowing this state is increasingly important to interpret modern changes in ice flow there. We produced a second synthesis of knowledge of the basal thermal state of the ice sheet using airborne and satellite observations and numerical models. About one-third of the ice sheet’s bed is likely thawed; two-fifths is likely frozen; and the remainder is too uncertain to specify.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022, https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Joseph A. MacGregor, Michael Studinger, Emily Arnold, Carlton J. Leuschen, Fernando Rodríguez-Morales, and John D. Paden
The Cryosphere, 15, 2569–2574, https://doi.org/10.5194/tc-15-2569-2021, https://doi.org/10.5194/tc-15-2569-2021, 2021
Short summary
Short summary
We combine multiple recent global glacier datasets and extend one of them (GlaThiDa) to evaluate past performance of radar-sounding surveys of the thickness of Earth's temperate glaciers. An empirical envelope for radar performance as a function of center frequency is determined, its limitations are discussed and its relevance to future radar-sounder survey and system designs is considered.
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, https://doi.org/10.5194/tc-15-909-2021, 2021
Short summary
Short summary
Ice shelves are thick floating layers of glacier ice extending from the glaciers on land that buttress much of the Antarctic Ice Sheet and help to protect it from losing ice to the ocean. However, the stability of ice shelves is vulnerable to meltwater lakes that form on their surfaces during the summer. This study focuses on the northern George VI Ice Shelf on the western side of the AP, which had an exceptionally long and extensive melt season in 2019/2020 compared to the previous 31 seasons.
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Stephen E. L. Howell, Randall K. Scharien, Jack Landy, and Mike Brady
The Cryosphere, 14, 4675–4686, https://doi.org/10.5194/tc-14-4675-2020, https://doi.org/10.5194/tc-14-4675-2020, 2020
Short summary
Short summary
Melt ponds form on the surface of Arctic sea ice during spring and have been shown to exert a strong influence on summer sea ice area. Here, we use RADARSAT-2 satellite imagery to estimate the predicted peak spring melt pond fraction in the Canadian Arctic Archipelago from 2009–2018. Our results show that RADARSAT-2 estimates of peak melt pond fraction can be used to provide predictive information about summer sea ice area within certain regions of the Canadian Arctic Archipelago.
Sahra Kacimi and Ron Kwok
The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020, https://doi.org/10.5194/tc-14-4453-2020, 2020
Short summary
Short summary
Our current understanding of Antarctic ice cover is largely informed by ice extent measurements from passive microwave sensors. These records, while useful, provide a limited picture of how the ice is responding to climate change. In this paper, we combine measurements from ICESat-2 and CryoSat-2 missions to assess snow depth and ice thickness of the Antarctic ice cover over an 8-month period (April through November 2019). The potential impact of salinity in the snow layer is discussed.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Paul Donchenko, Joshua King, and Richard Kelly
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-283, https://doi.org/10.5194/tc-2020-283, 2020
Publication in TC not foreseen
Short summary
Short summary
Estimating Arctic sea ice surface elevation from the CryoSat-2 instrument may not fully compensate for the incomplete penetration of radar through the snow cover and overestimate the ice thickness. This study investigates the accuracy of the ice surface measurement and how it is affected by the properties snow and ice properties. It was found that deep or salty snow, and rough ice can make the surface appear higher, but including these properties in the calculation may improve the estimate.
Michael Studinger, Brooke C. Medley, Kelly M. Brunt, Kimberly A. Casey, Nathan T. Kurtz, Serdar S. Manizade, Thomas A. Neumann, and Thomas B. Overly
The Cryosphere, 14, 3287–3308, https://doi.org/10.5194/tc-14-3287-2020, https://doi.org/10.5194/tc-14-3287-2020, 2020
Short summary
Short summary
We use repeat airborne geophysical data consisting of laser altimetry, snow, and Ku-band radar and optical imagery to analyze the spatial and temporal variability in surface roughness, slope, wind deposition, and snow accumulation at 88° S. We find small–scale variability in snow accumulation based on the snow radar subsurface layering, indicating areas of strong wind redistribution are prevalent at 88° S. There is no slope–independent relationship between surface roughness and accumulation.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Short summary
A new version of a set of data products that contain the velocity of sea ice and the age of this ice has been developed. We provide a history of the product development and discuss the improvements to the algorithms that create these products. We find that changes in sea ice motion and age show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice to a sea ice cover dominated by younger ice, which is more susceptible to summer melt.
Yinghui Liu, Jeffrey R. Key, Xuanji Wang, and Mark Tschudi
The Cryosphere, 14, 1325–1345, https://doi.org/10.5194/tc-14-1325-2020, https://doi.org/10.5194/tc-14-1325-2020, 2020
Short summary
Short summary
This study provides a consistent and accurate multi-decadal product of ice thickness and ice volume from 1984 to 2018 based on satellite-derived ice age. Sea ice volume trends from this dataset are stronger than the trends from other datasets. Changes in sea ice thickness contribute more to overall sea ice volume trends than changes in sea ice area do in all months.
Alice K. DuVivier, Patricia DeRepentigny, Marika M. Holland, Melinda Webster, Jennifer E. Kay, and Donald Perovich
The Cryosphere, 14, 1259–1271, https://doi.org/10.5194/tc-14-1259-2020, https://doi.org/10.5194/tc-14-1259-2020, 2020
Short summary
Short summary
In autumn 2019, a ship will be frozen into the Arctic sea ice for a year to study system changes. We analyze climate model data from a group of experiments and follow virtual sea ice floes throughout a year. The modeled sea ice conditions along possible tracks are highly variable. Observations that sample a wide range of sea ice conditions and represent the variety and diversity in possible conditions are necessary for improving climate model parameterizations over all types of sea ice.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019, https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Short summary
We validate TanDEM-X interferometry as a tool for deriving iceberg subaerial morphology using Operation IceBridge data. This approach enables a volumetric classification of icebergs, according to volume relevant to iceberg drift and decay, freshwater contribution, and potential impact on structures. We find iceberg volumes to generally match within 7 %. These results suggest that TanDEM-X could pave the way for future interferometric systems of scientific and operational iceberg classification.
Steven W. Fons and Nathan T. Kurtz
The Cryosphere, 13, 861–878, https://doi.org/10.5194/tc-13-861-2019, https://doi.org/10.5194/tc-13-861-2019, 2019
Short summary
Short summary
A method to measure the snow freeboard of Antarctic sea ice from CryoSat-2 data is developed. Through comparisons with data from airborne campaigns and another satellite mission, we find that this method can reasonably retrieve snow freeboard across the Antarctic and shows promise in retrieving snow depth in certain locations. Snow freeboard data from CryoSat-2 are important because they enable the calculation of sea ice thickness and help to better understand snow depth on Antarctic sea ice.
Michael Prince, Alexandre Roy, Ludovic Brucker, Alain Royer, Youngwook Kim, and Tianjie Zhao
Earth Syst. Sci. Data, 10, 2055–2067, https://doi.org/10.5194/essd-10-2055-2018, https://doi.org/10.5194/essd-10-2055-2018, 2018
Short summary
Short summary
This paper presents the weekly polar-gridded Aquarius passive L-band surface freeze–thaw product (FT-AP) distributed on the EASE-Grid 2.0 with a resolution of 36 km. To evaluate the product, we compared it with the resampled 37 GHz FT Earth Science Data Record during the overlapping period between 2011 and 2014. The FT-AP ensures, with the SMAP mission that is still in operation, an L-band passive FT monitoring continuum with NASA’s space-borne radiometers, for a period beginning in August 2011.
Frédéric Laliberté, Stephen E. L. Howell, Jean-François Lemieux, Frédéric Dupont, and Ji Lei
The Cryosphere, 12, 3577–3588, https://doi.org/10.5194/tc-12-3577-2018, https://doi.org/10.5194/tc-12-3577-2018, 2018
Short summary
Short summary
Ice that forms over marginal seas often gets anchored and becomes landfast. Landfast ice is fundamental to the local ecosystems, is of economic importance as it leads to hazardous seafaring conditions and is also a choice hunting ground for both the local population and large predators. Using observations and climate simulations, this study shows that, especially in the Canadian Arctic, landfast ice might be more resilient to climate change than is generally thought.
Alek A. Petty, Melinda Webster, Linette Boisvert, and Thorsten Markus
Geosci. Model Dev., 11, 4577–4602, https://doi.org/10.5194/gmd-11-4577-2018, https://doi.org/10.5194/gmd-11-4577-2018, 2018
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018, https://doi.org/10.5194/tc-12-2831-2018, 2018
Short summary
Short summary
Here, via analysis of radio-echo sounding data, we place a new observational constraint upon the basal water distribution beneath the Greenland Ice Sheet. In addition to the outlet glaciers, we demonstrate widespread water storage in the northern and eastern ice-sheet interior, a notable feature being a "corridor" of basal water extending from NorthGRIP to Petermann Glacier. The basal water distribution and its relationship with basal temperature provides a new constraint for numerical models.
Ron Kwok and Sahra Kacimi
The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, https://doi.org/10.5194/tc-12-2789-2018, 2018
Short summary
Short summary
The variability of snow depth and ice thickness in three years of repeat surveys of an IceBridge (OIB) transect across the Weddell Sea is examined. Retrieved thicknesses suggest a highly variable but broadly thicker ice cover compared to that inferred from drilling and ship-based measurements. The use of lidar and radar altimeters to estimate snow depth for thickness calculations is analyzed, and the need for better characterization of biases due to radar penetration effects is highlighted.
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018, https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Short summary
Ice properties inferred from multi-polarization measurements can provide insight into ice strain, viscosity, and ice flow. The Center for Remote Sensing of Ice Sheets used a ground-based radar for multi-channel and multi-polarization measurements at the NEEM site. This paper describes the radar system, antenna configurations, data collection, and processing and analysis of this data set. Comparisons between the radar observations, simulations, and ice core fabric data are in very good agreement.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Lawrence R. Mudryk, Chris Derksen, Stephen Howell, Fred Laliberté, Chad Thackeray, Reinel Sospedra-Alfonso, Vincent Vionnet, Paul J. Kushner, and Ross Brown
The Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-2018, https://doi.org/10.5194/tc-12-1157-2018, 2018
Short summary
Short summary
This paper presents changes in both snow and sea ice that have occurred over Canada during the recent past and shows climate model estimates for future changes expected to occur by the year 2050. The historical changes of snow and sea ice are generally coherent and consistent with the regional history of temperature and precipitation changes. It is expected that snow and sea ice will continue to decrease in the future, declining by an additional 15–30 % from present day values by the year 2050.
Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber
The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017, https://doi.org/10.5194/tc-11-1247-2017, 2017
Short summary
Short summary
Using radio-echo sounding data from northern Greenland, we demonstrate that subglacial roughness exhibits self-affine (fractal) scaling behaviour. This enables us to assess topographic control upon the bed-echo waveform, and explain the spatial distribution of the degree of scattering (specular and diffuse reflections). Via comparison with a prediction for the basal thermal state (thawed and frozen regions of the bed) we discuss the consequences of our study for basal water discrimination.
Anna Winter, Daniel Steinhage, Emily J. Arnold, Donald D. Blankenship, Marie G. P. Cavitte, Hugh F. J. Corr, John D. Paden, Stefano Urbini, Duncan A. Young, and Olaf Eisen
The Cryosphere, 11, 653–668, https://doi.org/10.5194/tc-11-653-2017, https://doi.org/10.5194/tc-11-653-2017, 2017
Lora S. Koenig, Alvaro Ivanoff, Patrick M. Alexander, Joseph A. MacGregor, Xavier Fettweis, Ben Panzer, John D. Paden, Richard R. Forster, Indrani Das, Joesph R. McConnell, Marco Tedesco, Carl Leuschen, and Prasad Gogineni
The Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016, https://doi.org/10.5194/tc-10-1739-2016, 2016
Short summary
Short summary
Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor surface mass balance in order to improve sea-level rise predictions. Here, we quantify the net annual accumulation over the Greenland Ice Sheet, which comprises the largest component of surface mass balance, at a higher spatial resolution than currently available using high-resolution, airborne-radar data.
T. M. Jordan, J. L. Bamber, C. N. Williams, J. D. Paden, M. J. Siegert, P. Huybrechts, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 10, 1547–1570, https://doi.org/10.5194/tc-10-1547-2016, https://doi.org/10.5194/tc-10-1547-2016, 2016
Short summary
Short summary
Ice penetrating radar enables determination of the basal properties of ice sheets. Existing algorithms assume stationarity in the attenuation rate, which is not justifiable at an ice sheet scale. We introduce the first ice-sheet-wide algorithm for radar attenuation that incorporates spatial variability, using the temperature field from a numerical model as an initial guess. The study is a step toward ice-sheet-wide data products for basal properties and evaluation of model temperature fields.
Stephen E. L. Howell, Frédéric Laliberté, Ron Kwok, Chris Derksen, and Joshua King
The Cryosphere, 10, 1463–1475, https://doi.org/10.5194/tc-10-1463-2016, https://doi.org/10.5194/tc-10-1463-2016, 2016
Short summary
Short summary
The Canadian Ice Service record of observed landfast ice and snow thickness represents one of the longest in the Arctic that spans over 5 decades. We analyze this record to report on long-term trends and variability of ice and snow thickness within the Canadian Arctic Archipelago (CAA). Results indicate a thinning of ice at several sites in the CAA. State-of-the-art climate models still have difficultly capturing observed ice thickness values in the CAA and should be used with caution.
Alek A. Petty, Michel C. Tsamados, Nathan T. Kurtz, Sinead L. Farrell, Thomas Newman, Jeremy P. Harbeck, Daniel L. Feltham, and Jackie A. Richter-Menge
The Cryosphere, 10, 1161–1179, https://doi.org/10.5194/tc-10-1161-2016, https://doi.org/10.5194/tc-10-1161-2016, 2016
Short summary
Short summary
This study presents an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper (ATM) laser altimeter, flown as part of NASA's Operation IceBridge mission. We describe and implement a newly developed sea ice surface feature-picking algorithm and derive novel information regarding the height, volume and geometry of surface features over the western Arctic sea ice cover.
N. Ivanova, L. T. Pedersen, R. T. Tonboe, S. Kern, G. Heygster, T. Lavergne, A. Sørensen, R. Saldo, G. Dybkjær, L. Brucker, and M. Shokr
The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, https://doi.org/10.5194/tc-9-1797-2015, 2015
Short summary
Short summary
Thirty sea ice algorithms are inter-compared and evaluated systematically over low and high sea ice concentrations, as well as in the presence of thin ice and melt ponds. A hybrid approach is suggested to retrieve sea ice concentration globally for climate monitoring purposes. This approach consists of a combination of two algorithms plus the implementation of a dynamic tie point and atmospheric correction of input brightness temperatures.
L. S. Koenig, D. J. Lampkin, L. N. Montgomery, S. L. Hamilton, J. B. Turrin, C. A. Joseph, S. E. Moutsafa, B. Panzer, K. A. Casey, J. D. Paden, C. Leuschen, and P. Gogineni
The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015, https://doi.org/10.5194/tc-9-1333-2015, 2015
Short summary
Short summary
The Greenland Ice Sheet is storing meltwater through the winter season just below its surface in buried supraglacial lakes. Airborne radar from Operation IceBridge between 2009 and 2012 was used to detect buried lakes, distributed extensively around the margin of the ice sheet. The volume of retained water in the buried lakes is likely insignificant compared to the total mass loss from the ice sheet but has important implications for ice temperatures.
P. R. Holland, A. Brisbourne, H. F. J. Corr, D. McGrath, K. Purdon, J. Paden, H. A. Fricker, F. S. Paolo, and A. H. Fleming
The Cryosphere, 9, 1005–1024, https://doi.org/10.5194/tc-9-1005-2015, https://doi.org/10.5194/tc-9-1005-2015, 2015
Short summary
Short summary
Antarctic Peninsula ice shelves have collapsed in recent decades. The surface of Larsen C Ice Shelf is lowering, but the cause of this has not been understood. This study uses eight radar surveys to show that the lowering is caused by both ice loss and a loss of air from the ice shelf's snowpack. At least two different processes are causing the lowering. The stability of Larsen C may be at risk from an ungrounding of Bawden Ice Rise or ice-front retreat past a 'compressive arch' in strain rates.
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
N. T. Kurtz, N. Galin, and M. Studinger
The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, https://doi.org/10.5194/tc-8-1217-2014, 2014
L. Brucker, E. P. Dinnat, and L. S. Koenig
The Cryosphere, 8, 905–913, https://doi.org/10.5194/tc-8-905-2014, https://doi.org/10.5194/tc-8-905-2014, 2014
S. E. L. Howell, T. Wohlleben, A. Komarov, L. Pizzolato, and C. Derksen
The Cryosphere, 7, 1753–1768, https://doi.org/10.5194/tc-7-1753-2013, https://doi.org/10.5194/tc-7-1753-2013, 2013
G. Picard, L. Brucker, A. Roy, F. Dupont, M. Fily, A. Royer, and C. Harlow
Geosci. Model Dev., 6, 1061–1078, https://doi.org/10.5194/gmd-6-1061-2013, https://doi.org/10.5194/gmd-6-1061-2013, 2013
N. T. Kurtz, S. L. Farrell, M. Studinger, N. Galin, J. P. Harbeck, R. Lindsay, V. D. Onana, B. Panzer, and J. G. Sonntag
The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, https://doi.org/10.5194/tc-7-1035-2013, 2013
Related subject area
Sea Ice
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Why is summertime Arctic sea ice drift speed projected to decrease?
Impact of atmospheric rivers on Arctic sea ice variations
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Modelling the evolution of Arctic multiyear sea ice over 2000–2018
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Analysis of microseismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
A collection of wet beam models for wave–ice interaction
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Probabilistic spatiotemporal seasonal sea ice presence forecasting using sequence-to-sequence learning and ERA5 data in the Hudson Bay region
Predictability of Arctic sea ice drift in coupled climate models
Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard
Influences of changing sea ice and snow thicknesses on simulated Arctic winter heat fluxes
Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model
A new state-dependent parameterization for the free drift of sea ice
Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements
A generalized stress correction scheme for the Maxwell elasto-brittle rheology: impact on the fracture angles and deformations
Wave dispersion and dissipation in landfast ice: comparison of observations against models
The influence of snow on sea ice as assessed from simulations of CESM2
Meltwater sources and sinks for multiyear Arctic sea ice in summer
An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice
Calibration of sea ice drift forecasts using random forest algorithms
Multiscale variations in Arctic sea ice motion and links to atmospheric and oceanic conditions
The flexural strength of bonded ice
Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification
An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations
Modeling the annual cycle of daily Antarctic sea ice extent
Changes of the Arctic marginal ice zone during the satellite era
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2
Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks
Variability scaling and consistency in airborne and satellite altimetry measurements of Arctic sea ice
Sea ice volume variability and water temperature in the Greenland Sea
Sea ice export through the Fram Strait derived from a combined model and satellite data set
Estimating early-winter Antarctic sea ice thickness from deformed ice morphology
On the multi-fractal scaling properties of sea ice deformation
Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone
What historical landfast ice observations tell us about projected ice conditions in Arctic archipelagoes and marginal seas under anthropogenic forcing
Interannual sea ice thickness variability in the Bay of Bothnia
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024, https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Short summary
Arctic sea ice cover evolves seasonally from large plates separated by long, linear leads in the winter to a mosaic of smaller sea ice floes in the summer. Here, we present a new image segmentation algorithm applied to thousands of images and identify over 9 million individual pieces of ice. We observe the characteristics of the floes and how they evolve throughout the summer as the ice breaks up.
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024, https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
Short summary
The study brings to light the suitability of CICE for seasonal prediction being contingent on several factors, such as initial conditions like sea ice coverage and thickness, as well as atmospheric and oceanic conditions including oceanic currents and sea surface temperature. We show there is potential to improve seasonal forecasting by using a more reliable sea ice thickness initialization. Thus, data assimilation of sea ice thickness is highly relevant for advancing seasonal prediction skills.
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024, https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Short summary
The HiDEM code has been developed for analyzing the fracture and fragmentation of brittle materials and has been extensively applied to glacier calving. Here, we report on the adaptation of the code to sea-ice dynamics and breakup. The code demonstrates the capability to simulate sea-ice dynamics on a 100 km scale with an unprecedented resolution. We argue that codes of this type may become useful for improving forecasts of sea-ice dynamics.
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024, https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Short summary
Brinicles are tubular ice structures that grow under the sea ice in cold regions. This happens because the salty water going downwards from the sea ice is colder than the seawater. We have successfully recreated an analogue of these structures in our laboratory. Three methods were used, producing different results. In this paper, we explain how to use these methods and study the behaviour of the brinicles created when changing the flow of water and study the importance for natural brinicles.
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024, https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Short summary
Over the long term, the speed at which sea ice in the Arctic moves has been increasing during all seasons. However, nearly all climate models project that sea ice motion will decrease during summer. This study aims to understand the mechanisms responsible for these projected decreases in summertime sea ice motion. We find that models produce changes in winds and ocean surface tilt which cause the sea ice to slow down, and it is realistic to expect such changes to also occur in the real world.
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024, https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
Short summary
We investigate how the moisture transport through atmospheric rivers influences Arctic sea ice variations using hourly atmospheric ERA5 for 1981–2020 at 0.25° × 0.25° resolution. We show that individual atmospheric rivers initiate rapid sea ice decrease through surface heat flux and winds. We find that the rate of change in sea ice concentration has significant anticorrelation with moisture, northward wind and turbulent heat flux on weather timescales almost everywhere in the Arctic Ocean.
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023, https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Short summary
Atmospheric circulation anomalies lead to high Arctic sea ice outflow in winter 2020, causing heavy ice conditions in the Barents–Greenland seas, subsequently impeding the sea surface temperature warming. This suggests that the winter–spring Arctic sea ice outflow can be considered a predictor of changes in sea ice and other marine environmental conditions in the Barents–Greenland seas, which could help to improve our understanding of the physical connections between them.
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023, https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Short summary
Sea ice repeatedly fractures near a prominent Alaskan headland as winds move ice along the coast, challenging predictions of sea ice drift. We find winds from high-pressure systems drive these fracturing events, and the Alaskan coastal boundary modifies the resultant ice drift. This observational study shows how wind patterns influence sea ice motion near coasts in winter. Identified relations between winds, ice drift, and fracturing provide effective test cases for dynamic sea ice models.
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023, https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Short summary
The frazil streaks are one of the visible signs of complex interactions between the mixed-layer dynamics and the forming sea ice. Using high-resolution visible satellite imagery we characterize their spatial properties, relationship with the meteorological forcing, and role in modifying wind-wave growth in the Terra Nova Bay Polynya. We provide a simple statistical tool for estimating the extent and ice coverage of the region of high ice production under given wind speed and air temperature.
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023, https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
Short summary
Multiyear ice (MYI), sea ice that survives the summer, is more resistant to changes than younger ice in the Arctic, so it is a good indicator of sea ice resilience. We use a model with a new way of tracking MYI to assess the contribution of different processes affecting MYI. We find two important years for MYI decline: 2007, when dynamics are important, and 2012, when melt is important. These affect MYI volume and area in different ways, which is important for the interpretation of observations.
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023, https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Short summary
Coherent flow patterns in sea ice have a significant influence on sea ice fracture and refreezing. We can better understand the state of sea ice, and its influence on the atmosphere and ocean, if we understand these structures. By adapting recent developments in chaotic dynamical systems, we are able to approximate ice stretching surrounding individual ice buoys. This illuminates the state of sea ice at much higher resolution and allows us to see previously invisible ice deformation patterns.
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Short summary
Information on sea ice surface topography is important for studies of sea ice as well as for ship navigation through ice. The ICESat-2 satellite senses the sea ice surface with six laser beams. To examine the accuracy of these measurements, we carried out a temporally coincident helicopter flight along the same ground track as the satellite and measured the sea ice surface topography with a laser scanner. This showed that ICESat-2 can see even bumps of only few meters in the sea ice cover.
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere, 17, 1327–1341, https://doi.org/10.5194/tc-17-1327-2023, https://doi.org/10.5194/tc-17-1327-2023, 2023
Short summary
Short summary
In the perspective of an upcoming seasonally ice-free Arctic, understanding the dynamics of sea ice in the changing climate is a major challenge in oceanography and climatology. It is therefore essential to monitor sea ice properties with fine temporal and spatial resolution. In this paper, we show that icequakes recorded on sea ice can be processed with artificial intelligence to produce accurate maps of sea ice thickness with high temporal and spatial resolutions.
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958, https://doi.org/10.5194/tc-17-939-2023, https://doi.org/10.5194/tc-17-939-2023, 2023
Short summary
Short summary
We have tried to develop some new wave–ice interaction models by considering two different types of forces, one of which emerges in the ice and the other of which emerges in the water. We have checked the ability of the models in the reconstruction of wave–ice interaction in a step-wise manner. The accuracy level of the models is acceptable, and it will be interesting to check whether they can be used in wave climate models or not.
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023, https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary
Short summary
It is necessary to know the type of Antarctic sea ice present – first-year ice (grown in one season) or multiyear ice (survived one summer melt) – to understand and model its evolution, as the ice types behave and react differently. We have adapted and extended an existing method (originally for the Arctic), and now, for the first time, daily maps of Antarctic sea ice types can be derived from microwave satellite data. This will allow a new data set from 2002 well into the future to be built.
Nazanin Asadi, Philippe Lamontagne, Matthew King, Martin Richard, and K. Andrea Scott
The Cryosphere, 16, 3753–3773, https://doi.org/10.5194/tc-16-3753-2022, https://doi.org/10.5194/tc-16-3753-2022, 2022
Short summary
Short summary
Machine learning approaches are deployed to provide accurate daily spatial maps of sea ice presence probability based on ERA5 data as input. Predictions are capable of predicting freeze-up/breakup dates within a 7 d period at specific locations of interest to shipping operators and communities. Forecasts of the proposed method during the breakup season have skills comparing to Climate Normal and sea ice concentration forecasts from a leading subseasonal-to-seasonal forecasting system.
Simon Felix Reifenberg and Helge Friedrich Goessling
The Cryosphere, 16, 2927–2946, https://doi.org/10.5194/tc-16-2927-2022, https://doi.org/10.5194/tc-16-2927-2022, 2022
Short summary
Short summary
Using model simulations, we analyze the impact of chaotic error growth on Arctic sea ice drift predictions. Regarding forecast uncertainty, our results suggest that it matters in which season and where ice drift forecasts are initialized and that both factors vary with the model in use. We find ice velocities to be slightly more predictable than near-surface wind, a main driver of ice drift. This is relevant for future developments of ice drift forecasting systems.
Agathe Serripierri, Ludovic Moreau, Pierre Boue, Jérôme Weiss, and Philippe Roux
The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022, https://doi.org/10.5194/tc-16-2527-2022, 2022
Short summary
Short summary
As a result of global warming, the sea ice is disappearing at a much faster rate than predicted by climate models. To better understand and predict its ongoing decline, we deployed 247 geophones on the fast ice in Van Mijen Fjord in Svalbard, Norway, in March 2019. The analysis of these data provided a precise daily evolution of the sea-ice parameters at this location with high spatial and temporal resolution and accuracy. The results obtained are consistent with the observations made in situ.
Laura L. Landrum and Marika M. Holland
The Cryosphere, 16, 1483–1495, https://doi.org/10.5194/tc-16-1483-2022, https://doi.org/10.5194/tc-16-1483-2022, 2022
Short summary
Short summary
High-latitude Arctic wintertime sea ice and snow insulate the relatively warmer ocean from the colder atmosphere. As the climate warms, wintertime Arctic conductive heat fluxes increase even when the sea ice concentrations remain high. Simulations from the Community Earth System Model Large Ensemble (CESM1-LE) show how sea ice and snow thicknesses, as well as the distribution of these thicknesses, significantly impact large-scale calculations of wintertime surface heat budgets in the Arctic.
Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang
The Cryosphere, 16, 1141–1156, https://doi.org/10.5194/tc-16-1141-2022, https://doi.org/10.5194/tc-16-1141-2022, 2022
Short summary
Short summary
We develop a regional linear Markov model consisting of four modules with seasonally dependent variables in the Pacific sector. The model retains skill for detrended sea ice extent predictions for up to 7-month lead times in the Bering Sea and the Sea of Okhotsk. The prediction skill, as measured by the percentage of grid points with significant correlations (PGS), increased by 75 % in the Bering Sea and 16 % in the Sea of Okhotsk relative to the earlier pan-Arctic model.
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere, 16, 533–557, https://doi.org/10.5194/tc-16-533-2022, https://doi.org/10.5194/tc-16-533-2022, 2022
Short summary
Short summary
Sea ice motion is a versatile parameter for monitoring the Arctic climate system. In this contribution, we use data from drifting buoys, winds, and ice thickness to parameterize the motion of sea ice in a free drift regime – i.e., flowing freely in response to the forcing from the winds and ocean currents. We show that including a dependence on sea ice thickness and taking into account a climatology of the surface ocean circulation significantly improves the accuracy of sea ice motion estimates.
Madison M. Smith, Marika Holland, and Bonnie Light
The Cryosphere, 16, 419–434, https://doi.org/10.5194/tc-16-419-2022, https://doi.org/10.5194/tc-16-419-2022, 2022
Short summary
Short summary
Climate models represent the atmosphere, ocean, sea ice, and land with equations of varying complexity and are important tools for understanding changes in global climate. Here, we explore how realistic variations in the equations describing how sea ice melt occurs at the edges (called lateral melting) impact ice and climate. We find that these changes impact the progression of the sea-ice–albedo feedback in the Arctic and so make significant changes to the predicted Arctic sea ice.
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022, https://doi.org/10.5194/tc-16-259-2022, 2022
Short summary
Short summary
Sea-ice thickness retrieval from satellite altimeters relies on assumed sea-ice density values because density cannot be measured from space. We derived bulk densities for different ice types using airborne laser, radar, and electromagnetic induction sounding measurements. Compared to previous studies, we found high bulk density values due to ice deformation and younger ice cover. Using sea-ice freeboard, we derived a sea-ice bulk density parameterisation that can be applied to satellite data.
Mathieu Plante and L. Bruno Tremblay
The Cryosphere, 15, 5623–5638, https://doi.org/10.5194/tc-15-5623-2021, https://doi.org/10.5194/tc-15-5623-2021, 2021
Short summary
Short summary
We propose a generalized form for the damage parameterization such that super-critical stresses can return to the yield with different final sub-critical stress states. In uniaxial compression simulations, the generalization improves the orientation of sea ice fractures and reduces the growth of numerical errors. Shear and convergence deformations however remain predominant along the fractures, contrary to observations, and this calls for modification of the post-fracture viscosity formulation.
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021, https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary
Short summary
We have shown through field experiments that the amount of wave energy dissipated in landfast ice, sea ice attached to land, is much larger than in broken ice. By comparing our measurements against predictions of contemporary wave–ice interaction models, we determined which models can explain our observations and which cannot. Our results will improve our understanding of how waves and ice interact and how we can model such interactions to better forecast waves and ice in the polar regions.
Marika M. Holland, David Clemens-Sewall, Laura Landrum, Bonnie Light, Donald Perovich, Chris Polashenski, Madison Smith, and Melinda Webster
The Cryosphere, 15, 4981–4998, https://doi.org/10.5194/tc-15-4981-2021, https://doi.org/10.5194/tc-15-4981-2021, 2021
Short summary
Short summary
As the most reflective and most insulative natural material, snow has important climate effects. For snow on sea ice, its high reflectivity reduces ice melt. However, its high insulating capacity limits ice growth. These counteracting effects make its net influence on sea ice uncertain. We find that with increasing snow, sea ice in both hemispheres is thicker and more extensive. However, the drivers of this response are different in the two hemispheres due to different climate conditions.
Don Perovich, Madison Smith, Bonnie Light, and Melinda Webster
The Cryosphere, 15, 4517–4525, https://doi.org/10.5194/tc-15-4517-2021, https://doi.org/10.5194/tc-15-4517-2021, 2021
Short summary
Short summary
During summer, Arctic sea ice melts on its surface and bottom and lateral edges. Some of this fresh meltwater is stored on the ice surface in features called melt ponds. The rest flows into the ocean. The meltwater flowing into the upper ocean affects ice growth and melt, upper ocean properties, and ocean ecosystems. Using field measurements, we found that the summer meltwater was equal to an 80 cm thick layer; 85 % of this meltwater flowed into the ocean and 15 % was stored in melt ponds.
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072, https://doi.org/10.5194/tc-15-4047-2021, https://doi.org/10.5194/tc-15-4047-2021, 2021
Short summary
Short summary
As the hydraulic permeability of sea ice is difficult to measure, observations are sparse. The present work presents numerical simulations of the permeability of young sea ice based on a large set of 3D X-ray tomographic images. It extends the relationship between permeability and porosity available so far down to brine porosities near the percolation threshold of a few per cent. Evaluation of pore scales and 3D connectivity provides novel insight into the percolation behaviour of sea ice.
Cyril Palerme and Malte Müller
The Cryosphere, 15, 3989–4004, https://doi.org/10.5194/tc-15-3989-2021, https://doi.org/10.5194/tc-15-3989-2021, 2021
Short summary
Short summary
Methods have been developed for calibrating sea ice drift forecasts from an operational prediction system using machine learning algorithms. These algorithms use predictors from sea ice concentration observations during the initialization of the forecasts, sea ice and wind forecasts, and some geographical information. Depending on the calibration method, the mean absolute error is reduced between 3.3 % and 8.0 % for the direction and between 2.5 % and 7.1 % for the speed of sea ice drift.
Dongyang Fu, Bei Liu, Yali Qi, Guo Yu, Haoen Huang, and Lilian Qu
The Cryosphere, 15, 3797–3811, https://doi.org/10.5194/tc-15-3797-2021, https://doi.org/10.5194/tc-15-3797-2021, 2021
Short summary
Short summary
Our results show three main sea ice drift patterns have different multiscale variation characteristics. The oscillation period of the third sea ice transport pattern is longer than the other two, and the ocean environment has a more significant influence on it due to the different regulatory effects of the atmosphere and ocean environment on sea ice drift patterns on various scales. Our research can provide a basis for the study of Arctic sea ice dynamics parameterization in numerical models.
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967, https://doi.org/10.5194/tc-15-2957-2021, https://doi.org/10.5194/tc-15-2957-2021, 2021
Short summary
Short summary
The strength of refrozen floes or piles of ice rubble is an important factor in assessing ice-structure interactions, as well as the integrity of an ice cover itself. The results of this paper provide unique data on the tensile strength of freeze bonds and are the first measurements to be reported. The provided information can lead to a better understanding of the behavior of refrozen ice floes and better estimates of the strength of an ice rubble pile.
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021, https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary
Short summary
Summer sea ice thickness observations based on electromagnetic induction measurements north of Fram Strait show a 20 % reduction in mean and modal ice thickness from 2001–2020. The observed variability is caused by changes in drift speeds and consequential variations in sea ice age and number of freezing-degree days. Increased ocean heat fluxes measured upstream in the source regions of Arctic ice seem to precondition ice thickness, which is potentially still measurable more than a year later.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020, https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Short summary
The continuous melting of the Arctic sea ice observed in the last decades has a significant impact at global and regional scales. To understand the amplitude and consequences of this impact, the monitoring of the total sea ice volume is crucial. However, in situ monitoring in such a harsh environment is hard to perform and far too expensive. This study shows that four well-placed sampling locations are sufficient to explain about 70 % of the inter-annual changes in the pan-Arctic sea ice volume.
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Short summary
The validation of satellite sea ice thickness (SIT) climate data records with newly acquired moored sonar SIT data shows that satellite products provide modal rather than mean SIT in the Laptev Sea region. This tendency of satellite-based SIT products to underestimate mean SIT needs to be considered for investigations of sea ice volume transports. Validation of satellite SIT in the first-year-ice-dominated Laptev Sea will support algorithm development for more reliable SIT records in the Arctic.
Mark S. Handcock and Marilyn N. Raphael
The Cryosphere, 14, 2159–2172, https://doi.org/10.5194/tc-14-2159-2020, https://doi.org/10.5194/tc-14-2159-2020, 2020
Short summary
Short summary
Traditional methods of calculating the annual cycle of sea ice extent disguise the variation of amplitude and timing (phase) of the advance and retreat of the ice. We present a multiscale model that explicitly allows them to vary, resulting in a much improved representation of the cycle. We show that phase is the dominant contributor to the variability in the cycle and that the anomalous decay of Antarctic sea ice in 2016 was due largely to a change of phase.
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020, https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
Short summary
It is well known that the Arctic sea ice extent is declining, and it is often assumed that the marginal ice zone (MIZ), the area of partial sea ice cover, is consequently increasing. However, we find no trend in the MIZ extent during the last 40 years from observations that is consistent with a widening of the MIZ as it moves northward. Differences of MIZ extent between different satellite retrievals are too large to provide a robust basis to verify model simulations of MIZ extent.
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Short summary
A new version of a set of data products that contain the velocity of sea ice and the age of this ice has been developed. We provide a history of the product development and discuss the improvements to the algorithms that create these products. We find that changes in sea ice motion and age show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice to a sea ice cover dominated by younger ice, which is more susceptible to summer melt.
Angela Cheng, Barbara Casati, Adrienne Tivy, Tom Zagon, Jean-François Lemieux, and L. Bruno Tremblay
The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020, https://doi.org/10.5194/tc-14-1289-2020, 2020
Short summary
Short summary
Sea ice charts by the Canadian Ice Service (CIS) contain visually estimated ice concentration produced by analysts. The accuracy of manually derived ice concentrations is not well understood. The subsequent uncertainty of ice charts results in downstream uncertainties for ice charts users, such as models and climatology studies, and when used as a verification source for automated sea ice classifiers. This study quantifies the level of accuracy and inter-analyst agreement for ice charts by CIS.
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020, https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Short summary
In this study, we proposed a novel 1-month sea ice concentration (SIC) prediction model with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). The proposed CNN model was evaluated and compared with the two baseline approaches, random-forest and simple-regression models, resulting in better performance. This study also examined SIC predictions for two extreme cases in 2007 and 2012 in detail and the influencing factors through a sensitivity analysis.
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020, https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Short summary
Sea ice thickness parameters are key to polar climate change studies and forecasts. Airborne and satellite measurements provide complementary observational capabilities. The study analyzes the variability in freeboard and snow depth measurements and its changes with scale in Operation IceBridge, CryoVEx, CryoSat-2 and ICESat. Consistency between airborne and satellite data is checked. Analysis calls for process-oriented attribution of variability and covariability features of these parameters.
Valeria Selyuzhenok, Igor Bashmachnikov, Robert Ricker, Anna Vesman, and Leonid Bobylev
The Cryosphere, 14, 477–495, https://doi.org/10.5194/tc-14-477-2020, https://doi.org/10.5194/tc-14-477-2020, 2020
Short summary
Short summary
This study explores a link between the long-term variations in the integral sea ice volume in the Greenland Sea and oceanic processes. We link the changes in the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) regional sea ice volume with the mixed layer, depth and upper-ocean heat content derived using the ARMOR dataset.
Chao Min, Longjiang Mu, Qinghua Yang, Robert Ricker, Qian Shi, Bo Han, Renhao Wu, and Jiping Liu
The Cryosphere, 13, 3209–3224, https://doi.org/10.5194/tc-13-3209-2019, https://doi.org/10.5194/tc-13-3209-2019, 2019
Short summary
Short summary
Sea ice volume export through the Fram Strait has been studied using varied methods, however, mostly in winter months. Here we report sea ice volume estimates that extend over summer seasons. A recent developed sea ice thickness dataset, in which CryoSat-2 and SMOS sea ice thickness together with SSMI/SSMIS sea ice concentration are assimilated, is used and evaluated in the paper. Results show our estimate is more reasonable than that calculated by satellite data only.
M. Jeffrey Mei, Ted Maksym, Blake Weissling, and Hanumant Singh
The Cryosphere, 13, 2915–2934, https://doi.org/10.5194/tc-13-2915-2019, https://doi.org/10.5194/tc-13-2915-2019, 2019
Short summary
Short summary
Sea ice thickness is hard to measure directly, and current datasets are very limited to sporadically conducted drill lines. However, surface elevation is much easier to measure. Converting surface elevation to ice thickness requires making assumptions about snow depth and density, which leads to large errors (and may not generalize to new datasets). A deep learning method is presented that uses the surface morphology as a direct predictor of sea ice thickness, with testing errors of < 20 %.
Pierre Rampal, Véronique Dansereau, Einar Olason, Sylvain Bouillon, Timothy Williams, Anton Korosov, and Abdoulaye Samaké
The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019, https://doi.org/10.5194/tc-13-2457-2019, 2019
Short summary
Short summary
In this article, we look at how the Arctic sea ice cover, as a solid body, behaves on different temporal and spatial scales. We show that the numerical model neXtSIM uses a new approach to simulate the mechanics of sea ice and reproduce the characteristics of how sea ice deforms, as observed by satellite. We discuss the importance of this model performance in the context of simulating climate processes taking place in polar regions, like the exchange of energy between the ocean and atmosphere.
Alberto Alberello, Miguel Onorato, Luke Bennetts, Marcello Vichi, Clare Eayrs, Keith MacHutchon, and Alessandro Toffoli
The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019, https://doi.org/10.5194/tc-13-41-2019, 2019
Short summary
Short summary
Existing observations do not provide quantitative descriptions of the floe size distribution for pancake ice floes. This is important during the Antarctic winter sea ice expansion, when hundreds of kilometres of ice cover around the Antarctic continent are composed of pancake floes (D = 0.3–3 m). Here, a new set of images from the Antarctic marginal ice zone is used to measure the shape of individual pancakes for the first time and to infer their size distribution.
Frédéric Laliberté, Stephen E. L. Howell, Jean-François Lemieux, Frédéric Dupont, and Ji Lei
The Cryosphere, 12, 3577–3588, https://doi.org/10.5194/tc-12-3577-2018, https://doi.org/10.5194/tc-12-3577-2018, 2018
Short summary
Short summary
Ice that forms over marginal seas often gets anchored and becomes landfast. Landfast ice is fundamental to the local ecosystems, is of economic importance as it leads to hazardous seafaring conditions and is also a choice hunting ground for both the local population and large predators. Using observations and climate simulations, this study shows that, especially in the Canadian Arctic, landfast ice might be more resilient to climate change than is generally thought.
Iina Ronkainen, Jonni Lehtiranta, Mikko Lensu, Eero Rinne, Jari Haapala, and Christian Haas
The Cryosphere, 12, 3459–3476, https://doi.org/10.5194/tc-12-3459-2018, https://doi.org/10.5194/tc-12-3459-2018, 2018
Short summary
Short summary
We quantify the sea ice thickness variability in the Bay of Bothnia using various observational data sets. For the first time we use helicopter and shipborne electromagnetic soundings to study changes in drift ice of the Bay of Bothnia. Our results show that the interannual variability of ice thickness is larger in the drift ice zone than in the fast ice zone. Furthermore, the mean thickness of heavily ridged ice near the coast can be several times larger than that of fast ice.
Cited articles
Brown, G. S.: A Theory for near-Normal Incidence Microwave-Scattering from 1st-Year Sea Ice, Radio Sci., 17, 233–243, 1982.
Coleman, T. F. and Li, Y.: An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM J. Optimiz., 6, 418–445, 1996.
Farrell, S. L., Kurtz, N., Connor, L. N., Elder, B., Leuschen, C., Markus, T., McAdoo, D., and Sonntag, J.: A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice, IEEE T. Geosci. Remote, 50, 2098–2111, 2012.
Fetterer, F. and Untersteiner, N.: Observations of melt ponds on Arctic sea ice, J. Geophys. Res., 103, 24821–24835, 1998.
Holt, B., Johnson, M. P., Perkovic-Martin, D., and Panzer, B.: Snow depth on Arctic sea ice derived from radar: In situ comparisons and time series analysis, J. Geophys. Res., 120, 4260–4287, 2015.
King, J., Howell, S., Derksen, C., Rutter, N., Toose, P., Beckers, J. F., Haas, C., Kurtz, N., and Richter-Menge, J.: Evaluation of Operation IceBridge quick-look snow depth estimates on sea ice, Geophys. Res. Lett., 42, 9302–9310, 2015.
Koenig, L. S., Martin, S., Studinger, M., and Sonntag, J.: Polar Airborne Observations Fill Gap in Satellite Data, EOS T. Am. Geophys. Un., 91, 333–334, 2010.
Koenig, L. S., Ivanoff, A., Alexander, P. M., MacGregor, J. A., Fettweis, X., Panzer, B., Paden, J. D., Forster, R. R., Das, I., McConnell, J. R., Tedesco, M., Leuschen, C., and Gogineni, P.: Annual Greenland accumulation rates (2009–2012) from airborne snow radar, The Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016, 2016.
Kurtz, N., Studinger, M., Harbeck, J. P., Onana, V. D., and Yi, D.: IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/G519SHCKWQV6, 2015. 2015.
Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge, Geophys. Res. Lett., 38, L20505, https://doi.org/10.1029/2011GL049216, 2011.
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013.
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting, The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014.
Kwok, R.: Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003, J. Geophys. Res., 109, C11004, https://doi.org/10.1029/2003JC002238, 2004.
Kwok, R.: Satellite remote sensing of sea-ice thickness and kinematics: a review, J. Glaciol., 56, 1129–1140, 2010.
Kwok, R. and Cunningham, G. F.: ICESat over Arctic sea ice: Estimation of snow depth and ice thickness, J. Geophys. Res., 113, C08010, https://doi.org/10.1029/2008JC004753, 2008.
Kwok, R. and Cunningham, G. F.: Variability of Arctic sea ice thickness and volume from CryoSat-2, Philos. T. Roy. Soc. A, 373, 20140157, https://doi.org/10.1098/rsta.2014.0157, 2015.
Kwok, R. and Haas, C.: Effects of radar side-lobes on snow depth retrievals from Operation IceBridge, J. Glaciol., 61, 576–584, 2015.
Kwok, R. and Maksym, T.: Snow depth of the Weddell and Bellingshausen sea ice covers from IceBridge surveys in 2010 and 2011: An examination, J. Geophys. Res., 119, 4141–4167, 2014.
Kwok, R. and Untersteiner, N.: The thinning of Arctic sea ice, Phys. Today, 64, 36–41, 2011.
Kwok, R., Panzer, B., Leuschen, C., Pang, S., Markus, T., Holt, B., and Gogineni, S.: Airborne surveys of snow depth over Arctic sea ice, J. Geophys. Res., 116, C11018, https://doi.org/10.1029/2011JC007371, 2011.
Kwok, R., Spreen, G., and Pang, S.: Arctic sea ice circulation and drift speed: Decadal trends and ocean currents, J. Geophys. Res., 118, 2408–2425, 2013.
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732-737, 2013.
Marr, J. C.: Snow Surveying, US Deptartment of Agriculture, Technology and Engineering, University of Virgini, Charlottesville, Va., 9–11, 1940.
Maykut, G. A. and Untersteiner, N.: Some Results from a Time-Dependent Thermodynamic Model of Sea Ice, J. Geophys. Res., 76, 1550–1575, 1971.
Newman, T., Farrell, S. L., Richter-Menge, J., Connor, L. N., Kurtz, N. T., Elder, B. C., and McAdoo, D.: Assessment of radar-derived snow depth over Arctic sea ice, J. Geophys. Res., 119, 8578–8602, 2014.
Nghiem, S. V., Clemente-Colón, P., Douglas, T., Moore, C., Obrist, D., Perovich, D. K., Pratt, K. A., Rigor, I. G., Simpson, W., Shepson, P. B., Steffen, A., and Woods, J.: Studying Bromine, Ozone, and Mercury Chemistry in the Arctic, EOS T. Am. Geophys. Un., 94, 289–291, 2013.
Panzer, B., Gomez-Garcia, D., Leuschen, C., Paden, J., Rodriguez-Morales, F., Patel, A., Markus, T., Holt, B., and Gogineni, P.: An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn, J. Glaciol., 59, 244–254, 2013.
Patel, A., Paden, J., Leuschen, C., Kwok, R., Gomez-Garcia, D., Panzer, B., Davidson, M. W. J., and Gogineni, S.: Fine-Resolution Radar Altimeter Measurements on Land and Sea Ice, IEEE Trans. Geosci. Remote Sens., 55, 1853–1853, 2017.
Polashenski, C., Perovich, D., and Courville, Z.: The mechanisms of sea ice melt pond formation and evolution, J. Geophys. Res., 117, C01001, https://doi.org/10.1029/2011JC007231, 2012.
Sturm, M. and Holmgren, J.: Self-recording snow depth probe, US 08/871,620, US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, USA, US Patent 5,864,059, 1999.
Sturm, M., Holmgren, J., and Perovich, D. K.: Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability, J. Geophys. Res., 107, 8047, https://doi.org/10.1029/2000JC000400, 2002.
Sturm, M., Maslanik, J. A., Perovich, D. K., Stroeve, J. C., Richter-Menge, J., Markus, T., Holmgren, J., Heinrichs, J. F., and Tape, K.: Snow depth and ice thickness measurements from the Beaufort and Chukchi seas collected during the AMSR-Ice03 campaign, IEEE Trans. Geosci. Remote Sens., 44, 3009–3020, 2006.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N., Aleksandrov, Y. I., and Colony, R.: Snow depth on Arctic sea ice, J. Clim., 12, 1814–1829, 1999.
Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L., Perovich, D. K., and Sturm, M.: Interdecadal changes in snow depth on Arctic sea ice, J. Geophys. Res., 119, 5395–5406, 2014.
Webster, M. A., Rigor, I. G., Perovich, D. K., Richter-Menge, J. A., Polashenski, C. M., and Light, B.: Seasonal evolution of melt ponds on Arctic sea ice, J. Geophys. Res., 120, 5968–5982, 2015.
Yan, J. B., Alvestegui, D. G. G., McDaniel, J. W., Li, Y., Gogineni, S., Rodriguez-Morales, F., Brozena, J., and Leuschen, C. J.: Ultrawideband FMCW Radar for Airborne Measurements of Snow Over Sea Ice and Land, IEEE Trans. Geosci. Remote Sens., 55, 834–843, 2017.
Short summary
Since 2009, the ultra-wideband snow radar on Operation IceBridge has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Existing snow depth retrieval algorithms differ in the way the air–snow and snow–ice interfaces are detected and localized in the radar returns and in how the system limitations are addressed. Here, we assess five retrieval algorithms by comparisons with field measurements, ground-based campaigns, and analyzed fields of snow depth.
Since 2009, the ultra-wideband snow radar on Operation IceBridge has acquired data in annual...