Articles | Volume 11, issue 5
The Cryosphere, 11, 2231–2246, 2017

Special issue: Oldest Ice: finding and interpreting climate proxies in ice...

The Cryosphere, 11, 2231–2246, 2017
Research article
20 Sep 2017
Research article | 20 Sep 2017

Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

Olivier Passalacqua et al.

Related authors

Brief communication: Candidate sites of 1.5 Myr old ice 37 km southwest of the Dome C summit, East Antarctica
Olivier Passalacqua, Marie Cavitte, Olivier Gagliardini, Fabien Gillet-Chaulet, Frédéric Parrenin, Catherine Ritz, and Duncan Young
The Cryosphere, 12, 2167–2174,,, 2018
Short summary
Is there 1.5-million-year-old ice near Dome C, Antarctica?
Frédéric Parrenin, Marie G. P. Cavitte, Donald D. Blankenship, Jérôme Chappellaz, Hubertus Fischer, Olivier Gagliardini, Valérie Masson-Delmotte, Olivier Passalacqua, Catherine Ritz, Jason Roberts, Martin J. Siegert, and Duncan A. Young
The Cryosphere, 11, 2427–2437,,, 2017
Short summary
Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome
Olivier Passalacqua, Olivier Gagliardini, Frédéric Parrenin, Joe Todd, Fabien Gillet-Chaulet, and Catherine Ritz
Geosci. Model Dev., 9, 2301–2313,,, 2016
Short summary

Related subject area

Ice Cores
Chronostratigraphy of the Larsen blue-ice area in northern Victoria Land, East Antarctica, and its implications for paleoclimate
Giyoon Lee, Jinho Ahn, Hyeontae Ju, Florian Ritterbusch, Ikumi Oyabu, Christo Buizert, Songyi Kim, Jangil Moon, Sambit Ghosh, Kenji Kawamura, Zheng-Tian Lu, Sangbum Hong, Chang Hee Han, Soon Do Hur, Wei Jiang, and Guo-Min Yang
The Cryosphere, 16, 2301–2324,,, 2022
Short summary
A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008,,, 2022
Short summary
Gas isotope thermometry in the South Pole and Dome Fuji Ice Cores provides evidence for seasonal rectification of ice core gas records
Jacob Davies Morgan, Christo Buizert, Tyler Jeffrey Fudge, Kenji Kawamura, Jeffrey Peck Severinghaus, and Cathy M. Trudinger
The Cryosphere Discuss.,,, 2022
Revised manuscript accepted for TC
Short summary
Regional variability of diatoms in ice cores from the Antarctic Peninsula and Ellsworth Land, Antarctica
Dieter R. Tetzner, Claire S. Allen, and Elizabeth R. Thomas
The Cryosphere, 16, 779–798,,, 2022
Short summary
Microstructure, micro-inclusions, and mineralogy along the EGRIP (East Greenland Ice Core Project) ice core – Part 2: Implications for palaeo-mineralogy
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688,,, 2022
Short summary

Cited articles

Bamber, J., Gomez-Dans, J., and Griggs, J.: Antarctic 1 km digital elevation model (DEM) from combined ERS-1 radar and ICESat laser satellite altimetry, National Snow and Ice Data Center, Boulder, Colorado, USA, 2009.
Bintanja, R. and Van de Wal, R.: North American ice-sheet dynamics and the onset of 100 000-year glacial cycles, Nature, 454, 869–872, 2008.
Brook, E. J., Wolff, E., Dahl-Jensen, D., Fischer, H., and Steig, E. J.: The future of ice coring: International partnerships in Ice Core Sciences (IPICS), PAGES news, 14, 6–10, (last access: 13 September 2017), 2006.
Carson, C. J., McLaren, S., Roberts, J. L., Boger, S. D., and Blankenship, D. D.: Hot rocks in a cold place: high sub-glacial heat flow in East Antarctica, J. Geol. Soc., 171, 9–12,, 2014.
Carter, S. P., Blankenship, D. D., Young, D. A., and Holt, J. W.: Using radar-sounding data to identify the distribution and sources of subglacial water: application to Dome C, East Antarctica, J. Glaciol., 55, 1025–1040, 2009.
Short summary
As the Dome C region is a key area for oldest-ice research, we need to better constrain the geothermal flux (GF) so that past basal melt rates are well constrained. Our inverse heat model significantly reduces the confidence intervals of the GF regional field around Dome C, which ranges from 48 to 60 mW m−2. Radar echoes need to be interpreted knowing the time lag of the climate signal to reach the bed. Several old-ice targets are confirmed and a new one is suggested, in which the GF is very low.