Articles | Volume 11, issue 3
Brief communication
03 May 2017
Brief communication |  | 03 May 2017

Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model

Luke G. Bennetts, Siobhan O'Farrell, and Petteri Uotila

Related authors

Wind, waves, and surface currents in the Southern Ocean: observations from the Antarctic Circumnavigation Expedition
Marzieh H. Derkani, Alberto Alberello, Filippo Nelli, Luke G. Bennetts, Katrin G. Hessner, Keith MacHutchon, Konny Reichert, Lotfi Aouf, Salman Khan, and Alessandro Toffoli
Earth Syst. Sci. Data, 13, 1189–1209,,, 2021
Short summary
Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone
Alberto Alberello, Miguel Onorato, Luke Bennetts, Marcello Vichi, Clare Eayrs, Keith MacHutchon, and Alessandro Toffoli
The Cryosphere, 13, 41–48,,, 2019
Short summary

Related subject area

Sea Ice
A collection of wet beam models for wave–ice interaction
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958,,, 2023
Short summary
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126,,, 2023
Short summary
Analysis of micro-seismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere Discuss.,,, 2022
Revised manuscript accepted for TC
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
EGUsphere,,, 2022
Short summary
Probabilistic spatiotemporal seasonal sea ice presence forecasting using sequence-to-sequence learning and ERA5 data in the Hudson Bay region
Nazanin Asadi, Philippe Lamontagne, Matthew King, Martin Richard, and K. Andrea Scott
The Cryosphere, 16, 3753–3773,,, 2022
Short summary

Cited articles

Bennetts, L.: Wave-ice breakup model for inclusion in CICE Australian Antarctic Data Centre – CAASM Metadata (, 2016, updated 2016.
Bennetts, L. G., O'Farrell, S., Uotila, P., and Squire, V. A.: An idealised wave–ice interaction model without subgrid spatial or temporal discretisations, Ann. Glaciol., 56, 258–262, 2015.
Durrant, T., Hemer, M., Trenham, C., and Greenslade, D.: CAWCR Wave Hindcast 1979–2010. v7, Tech. rep., CSIRO. Data Collection,, 2013.
Feltham, D. L.: Granular flow in the marginal ice zone, Phil. Trans. R. Soc. Lond. A, 363, 1677–1700,, 2005.
Herman, A.: Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems, Phys. Rev. E, 81, 066123,, 2010.
Short summary
A numerical model is used to investigate how Antarctic sea ice concentration and volume are affected by increased melting caused by ocean-wave breakup of the ice. When temperatures are high enough to melt the ice, concentration and volume are reduced for ~ 100 km into the ice-covered ocean. When temperatures are low enough for ice growth, the concentration recovers, but the reduced volume persists.