Articles | Volume 11, issue 3
https://doi.org/10.5194/tc-11-1035-2017
https://doi.org/10.5194/tc-11-1035-2017
Brief communication
 | 
03 May 2017
Brief communication |  | 03 May 2017

Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model

Luke G. Bennetts, Siobhan O'Farrell, and Petteri Uotila

Related authors

Wind, waves, and surface currents in the Southern Ocean: observations from the Antarctic Circumnavigation Expedition
Marzieh H. Derkani, Alberto Alberello, Filippo Nelli, Luke G. Bennetts, Katrin G. Hessner, Keith MacHutchon, Konny Reichert, Lotfi Aouf, Salman Khan, and Alessandro Toffoli
Earth Syst. Sci. Data, 13, 1189–1209, https://doi.org/10.5194/essd-13-1189-2021,https://doi.org/10.5194/essd-13-1189-2021, 2021
Short summary
Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone
Alberto Alberello, Miguel Onorato, Luke Bennetts, Marcello Vichi, Clare Eayrs, Keith MacHutchon, and Alessandro Toffoli
The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019,https://doi.org/10.5194/tc-13-41-2019, 2019
Short summary

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Seasonal Evolution of the Sea Ice Floe Size Distribution from Two Decades of MODIS Data
Ellen Margaret Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica Martinez Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2024-89,https://doi.org/10.5194/egusphere-2024-89, 2024
Short summary

Cited articles

Bennetts, L.: Wave-ice breakup model for inclusion in CICE Australian Antarctic Data Centre – CAASM Metadata (https://data.aad.gov.au/metadata/records/AAS_4123_CICE-Model), 2016, updated 2016.
Bennetts, L. G., O'Farrell, S., Uotila, P., and Squire, V. A.: An idealised wave–ice interaction model without subgrid spatial or temporal discretisations, Ann. Glaciol., 56, 258–262, 2015.
Durrant, T., Hemer, M., Trenham, C., and Greenslade, D.: CAWCR Wave Hindcast 1979–2010. v7, Tech. rep., CSIRO. Data Collection, https://doi.org/10.4225/08/523168703DCC5, 2013.
Feltham, D. L.: Granular flow in the marginal ice zone, Phil. Trans. R. Soc. Lond. A, 363, 1677–1700, https://doi.org/10.1098/rsta.2005.1601, 2005.
Herman, A.: Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems, Phys. Rev. E, 81, 066123, https://doi.org/10.1103/PhysRevE.81.066123, 2010.
Download
Short summary
A numerical model is used to investigate how Antarctic sea ice concentration and volume are affected by increased melting caused by ocean-wave breakup of the ice. When temperatures are high enough to melt the ice, concentration and volume are reduced for ~ 100 km into the ice-covered ocean. When temperatures are low enough for ice growth, the concentration recovers, but the reduced volume persists.