Articles | Volume 11, issue 3
https://doi.org/10.5194/tc-11-1035-2017
https://doi.org/10.5194/tc-11-1035-2017
Brief communication
 | 
03 May 2017
Brief communication |  | 03 May 2017

Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model

Luke G. Bennetts, Siobhan O'Farrell, and Petteri Uotila

Abstract. Impacts of wave-induced breakup of Antarctic sea ice on ice concentration and volume are investigated using a modified version of the CICE sea-ice model, run in stand-alone mode from 1979–2010. Model outputs show that during summer wave-induced breakup reduces local ice concentration by up to 0.3–0.4 in a vicinity of the ice edge and total ice volume by up to a factor of 0.1–0.2.

Download
Short summary
A numerical model is used to investigate how Antarctic sea ice concentration and volume are affected by increased melting caused by ocean-wave breakup of the ice. When temperatures are high enough to melt the ice, concentration and volume are reduced for ~ 100 km into the ice-covered ocean. When temperatures are low enough for ice growth, the concentration recovers, but the reduced volume persists.