Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-87-2016
https://doi.org/10.5194/tc-10-87-2016
Research article
 | 
18 Jan 2016
Research article |  | 18 Jan 2016

Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013

M. Chernos, M. Koppes, and R. D. Moore

Related authors

Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers
N. Chauché, A. Hubbard, J.-C. Gascard, J. E. Box, R. Bates, M. Koppes, A. Sole, P. Christoffersen, and H. Patton
The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014,https://doi.org/10.5194/tc-8-1457-2014, 2014
Spatial controls on groundwater response dynamics in a snowmelt-dominated montane catchment
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014,https://doi.org/10.5194/hess-18-1835-2014, 2014
Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover
J. A. Leach and R. D. Moore
Hydrol. Earth Syst. Sci., 18, 819–838, https://doi.org/10.5194/hess-18-819-2014,https://doi.org/10.5194/hess-18-819-2014, 2014
An approach to derive regional snow lines and glacier mass change from MODIS imagery, western North America
J. M. Shea, B. Menounos, R. D. Moore, and C. Tennant
The Cryosphere, 7, 667–680, https://doi.org/10.5194/tc-7-667-2013,https://doi.org/10.5194/tc-7-667-2013, 2013

Related subject area

Glaciers
Brief Communication: Glacier mapping and change estimation using very high resolution declassified Hexagon KH-9 panoramic stereo imagery (1971–1984)
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-203,https://doi.org/10.5194/tc-2022-203, 2022
Preprint under review for TC
Short summary
Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022,https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
Whyjay Zheng
The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022,https://doi.org/10.5194/tc-16-1431-2022, 2022
Short summary
A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022,https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Geometric controls of tidewater glacier dynamics
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022,https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary

Cited articles

Barry, R. G.: The status of research on glaciers and global glacier recession: a review, Prog. Phys. Geogr., 30, 285–306, https://doi.org/10.1191/0309133306pp478ra, 2006.
BC Ministry of Environment: Historic Snow Survey Data, http://a100.gov.bc.ca/pub/mss/stationlist.do, last access: 30 September 2014.
Benn, D., Hulton, N., and Mottram, R.: 'Calving laws', 'sliding laws' and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, 2007a.
Benn, D., Warren, C., and Mottram, R.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, 2007b.
Bird, L.: Hydrology and thermal regime of a proglacial lake fed by a calving glacier, Master's thesis, University of British Columbia, British Columbia, 2014.
Download
Short summary
Ice loss from calving and surface melt is estimated at lake-terminating Bridge Glacier, British Columbia, Canada, from 1984 to 2013. Since the glacier's terminus began to float in 1991, calving has accounted for 10-25% of the glacier's total ice loss below the ELA. Overall, calving is a relatively small component of ice loss and is expected to decrease in importance in the future as the glacier retreats onto dry land. Hence, projections of future retreat remain dependent on climatic conditions.