Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-3091-2016
https://doi.org/10.5194/tc-10-3091-2016
Review article
 | 
21 Dec 2016
Review article |  | 21 Dec 2016

Radiocarbon dating of glacier ice: overview, optimisation, validation and potential

Chiara Uglietti, Alexander Zapf, Theo Manuel Jenk, Michael Sigl, Sönke Szidat, Gary Salazar, and Margit Schwikowski

Related authors

Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017,https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary

Related subject area

Ice Cores
A 350,000-year-old blue ice identified at the surface of the Elephant Moraine region, East Antarctica
Giyoon Lee, Jinho Ahn, Hyeontae Ju, Ikumi Oyabu, Florian Ritterbusch, Songyi Kim, Jangil Moon, Joohan Lee, Yeongcheol Han, Soon Do Hur, Kenji Kawamura, Zheng-Tian Lu, Wei Jiang, and Guo-Min Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1436,https://doi.org/10.5194/egusphere-2025-1436, 2025
Short summary
What does the impurity variability at the microscale represent in ice cores? Insights from a conceptual approach
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
The Cryosphere, 19, 1373–1390, https://doi.org/10.5194/tc-19-1373-2025,https://doi.org/10.5194/tc-19-1373-2025, 2025
Short summary
Reconstruction of mass balance and firn stratigraphy during the 1996–2011 warm period at high-altitude on Mt. Ortles, Eastern Alps: a comparison of modelled and ice core results
Luca Carturan, Alexander C. Ihle, Federico Cazorzi, Tiziana Lazzarina Zendrini, Fabrizio De Blasi, Giancarlo Dalla Fontana, Giuliano Dreossi, Daniela Festi, Bryan Mark, Klaus Dieter Oeggl, Roberto Seppi, Barbara Stenni, and Paolo Gabrielli
EGUsphere, https://doi.org/10.5194/egusphere-2025-729,https://doi.org/10.5194/egusphere-2025-729, 2025
Short summary
Brief Communication: The Danish Replicate Drilling System – Results from the First Field Test
Julien Westhoff, Grant Vernon Boeckmann, Nicholas Mossor Rathmann, and Steffen Bo Hansen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3081,https://doi.org/10.5194/egusphere-2024-3081, 2024
Short summary
Laser ablation inductively coupled plasma mass spectrometry measurements for high-resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024,https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary

Cited articles

Agrios, K., Salazar, G., Zhang, J.-L., Uglietti, C., Battaglia, M., Luginbühl, M., Ciobanu, V. G., Vonwiller, M., and Szidat, S.: Online coupling of pure O2 thermo-optical methods – 14C AMS for source apportionment of carbonaceous aerosols, Nucl. Instrum. Meth. Phys. Res. B, 361, 288-293, 2015.
Aizen, E. M., Aizen, V. B., Takeuchi, N., Joswiak, D. R., Fujita, K., Nikitin, S. A., Grigholm, B., Zapf, A., Mayewski, P., Schwikowski, M., and Nakawo, M.: Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene, J. Glaciol., 62, 411–439, 2016.
Bolzan, J. F.: Ice Flow at the Dome-C Ice Divide Based on a Deep Temperature Profile, J. Geophys. Res.-Atmos., 90, 8111–8124, 1985.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Sci. Rev., 27, 42–60, 2008.
Bronk Ramsey, C. and Lee, S.: Recent and planned developments of the program Oxcal, Radiocarbon, 55, 720–730, 2013.
Download
Short summary
A meaningful interpretation of the climatic history contained in ice cores requires a precise chronology. For dating the older and deeper part of the glaciers, radiocarbon analysis can be used when organic matter such as plant or insect fragments are found in the ice. Since this happens rarely, a complementary dating tool, based on radiocarbon dating of the insoluble fraction of carbonaceous aerosols entrapped in the ice, allows for ice dating between 200 and more than 10 000 years.
Share