Articles | Volume 10, issue 6
The Cryosphere, 10, 3043–3062, 2016
The Cryosphere, 10, 3043–3062, 2016

Research article 16 Dec 2016

Research article | 16 Dec 2016

Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms

Nikolas O. Aksamit and John W. Pomeroy

Related authors

Harnessing stratospheric diffusion barriers for enhanced climate geoengineering
Nikolas O. Aksamit, Ben Kravitz, Douglas G. MacMartin, and George Haller
Atmos. Chem. Phys., 21, 8845–8861,,, 2021
Short summary
Warm-air entrainment and advection during alpine blowing snow events
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 14, 2795–2807,,, 2020
Short summary

Related subject area

Snow Physics
Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography
Rémi Granger, Frédéric Flin, Wolfgang Ludwig, Ismail Hammad, and Christian Geindreau
The Cryosphere, 15, 4381–4398,,, 2021
Short summary
Recent observations of superimposed ice and snow ice on sea ice in the northwestern Weddell Sea
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178,,, 2021
Short summary
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948,,, 2021
Short summary
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755,,, 2021
Short summary
Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272,,, 2021
Short summary

Cited articles

Anderson, R. S.: Eolian sediment transport as a stochastic process: The effects of a fluctuating wind on particle trajectories, J. Geol., 95, 497–512,, 1987.
Anderson, R. S. and Haff, P. K.: Simulation of eolian saltation, Science, 241, 820–3,, 1988.
Andreotti, B.: A two species model of aeolian sand transport, J. Fluid Mech., 510, 47–70, 2004.
Bagnold, R. A.: The physics of blown sand and desert dunes, 1st Edn., Methuen & Co. Limited, London, 1941.
Bauer, B., Yi, J., Namikas, S., and Sherman, D.: Event detection and conditional averaging in unsteady aeolian systems, J. Arid Environ., 39, 345–375, 1998.
Short summary
The first implementation of particle tracking velocimetry in outdoor alpine blowing snow has both provided new insight on intermittent snow particle transport initiation and entrainment in the dense near-surface "creep" layer whilst also confirming some wind tunnel observations. Environmental PTV has shown to be a viable avenue for furthering our understanding of the coupling of the atmospheric boundary layer turbulence and blowing snow transport.