Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2241-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-2241-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape
Jitendra Kumar
CORRESPONDING AUTHOR
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Nathan Collier
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Gautam Bisht
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Richard T. Mills
Intel Corporation, Hillsboro, OR, USA
Peter E. Thornton
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Colleen M. Iversen
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Vladimir Romanovsky
Geophysical Institute, University of Alaska Fairbanks, AK, USA
Related authors
Bharat Sharma, Jitendra Kumar, Auroop R. Ganguly, and Forrest M. Hoffman
Biogeosciences, 20, 1829–1841, https://doi.org/10.5194/bg-20-1829-2023, https://doi.org/10.5194/bg-20-1829-2023, 2023
Short summary
Short summary
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and droughts. The impact of such climate extremes is detrimental to terrestrial carbon uptake capacity. We found that due to overall climate warming, about 88 % of the world's regions towards the end of 2100 will show anomalous losses in net biospheric productivity (NBP) rather than gains. More than 50 % of all negative NBP extremes were driven by the compound effect of dry, hot, and fire conditions.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Jitendra Kumar, Forrest M. Hoffman, William W. Hargrove, and Nathan Collier
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-36, https://doi.org/10.5194/essd-2016-36, 2016
Preprint withdrawn
Short summary
Short summary
The Eddy-covariance measurements from global network of flux sites help understand the emergent ecosystem properties. This study presents an approach to assess the representativeness of the observations at the flux sites and upscale the measured fluxes to develop time series of high resolution global gridded data set. Upscaled gross primary productivity data sets captures the heterogeneity of terrestrial ecosystem and reflects the seasonal and interannual variability observed at flux sites.
Guoping Tang, Fengming Yuan, Gautam Bisht, Glenn E. Hammond, Peter C. Lichtner, Jitendra Kumar, Richard T. Mills, Xiaofeng Xu, Ben Andre, Forrest M. Hoffman, Scott L. Painter, and Peter E. Thornton
Geosci. Model Dev., 9, 927–946, https://doi.org/10.5194/gmd-9-927-2016, https://doi.org/10.5194/gmd-9-927-2016, 2016
Short summary
Short summary
We demonstrate that CLM-PFLOTRAN predictions are consistent with CLM4.5 for Arctic, temperate, and tropical sites. A tight relative tolerance may be needed to avoid false convergence when scaling, clipping, or log transformation is used to avoid negative concentration in implicit time stepping and Newton-Raphson methods. The log transformation method is accurate and robust while relaxing relative tolerance or using the clipping or scaling method can result in efficient solutions.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2024-2249, https://doi.org/10.5194/egusphere-2024-2249, 2024
Short summary
Short summary
Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. In this work, we develop an approach to predict snow depth from variability in snow-ground interface temperature using small temperature sensors that are cheap and easy-to-deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that was not previously possible.
Katherine Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golez, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautum Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordonez
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-149, https://doi.org/10.5194/gmd-2024-149, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer biases reduction in temperature, salinity, and sea-ice extent in the North Atlantic, a small strengthening of the Atlantic Meridional Overturning Circulation, and improvements in many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William Sacks, Ethan Coon, and Robert Hetland
EGUsphere, https://doi.org/10.5194/egusphere-2024-1555, https://doi.org/10.5194/egusphere-2024-1555, 2024
Short summary
Short summary
We integrate E3SM land model (ELM) with the WRF Model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) – Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM, and ESMF caps for ELM initialization, execution, and finalization. The LILAC-ESMF framework maintains the integrity of the ELM’s source code structure and facilitates the transfer of future developments in LSMs to WRF-ELM.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-43, https://doi.org/10.5194/essd-2024-43, 2024
Preprint under review for ESSD
Short summary
Short summary
We have developed a new map that reveals how organic carbon from soil leaches into headwater streams over the contiguous United States. We use advanced artificial intelligence techniques and a massive amount of data, including observations at over 2,500 gauges and a wealth of climate and environmental information. The map is a critical step in understanding and predicting how carbon moves through our environment, hence a useful tool for tackling climate challenges.
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024, https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary
Short summary
We aim to disentangle the hydrological and hydraulic controls on streamflow variability in a fully coupled earth system model. We found that calibrating only one process (i.e., traditional calibration procedure) will result in unrealistic parameter values and poor performance of the water cycle, while the simulated streamflow is improved. To address this issue, we further proposed a two-step calibration procedure to reconcile the impacts from hydrological and hydraulic processes on streamflow.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Bharat Sharma, Jitendra Kumar, Auroop R. Ganguly, and Forrest M. Hoffman
Biogeosciences, 20, 1829–1841, https://doi.org/10.5194/bg-20-1829-2023, https://doi.org/10.5194/bg-20-1829-2023, 2023
Short summary
Short summary
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and droughts. The impact of such climate extremes is detrimental to terrestrial carbon uptake capacity. We found that due to overall climate warming, about 88 % of the world's regions towards the end of 2100 will show anomalous losses in net biospheric productivity (NBP) rather than gains. More than 50 % of all negative NBP extremes were driven by the compound effect of dry, hot, and fire conditions.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
Short summary
Topography exerts significant influence on the incoming solar radiation at the land surface. This study incorporated a well-validated sub-grid topographic parameterization in E3SM land model (ELM) version 1.0. The results demonstrate that sub-grid topography has non-negligible effects on surface energy budget, snow cover, and surface temperature over the Tibetan Plateau and that the ELM simulations are sensitive to season, elevation, and spatial scale.
Daniel M. Ricciuto, Xiaojuan Yang, Dali Wang, and Peter E. Thornton
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-163, https://doi.org/10.5194/bg-2021-163, 2021
Publication in BG not foreseen
Short summary
Short summary
This paper uses a novel approach to quantify the impacts of the choice of decomposition model on carbon and nitrogen cycling. We compare the models to experimental data that examined litter decomposition over five different biomes. Despite widely differing assumptions, the models produce similar patterns of decomposition when nutrients are limiting. This differs from past analyses that did not consider the impacts of changing environmental conditions or nutrients.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Emmanuel Léger, Baptiste Dafflon, Yves Robert, Craig Ulrich, John E. Peterson, Sébastien C. Biraud, Vladimir E. Romanovsky, and Susan S. Hubbard
The Cryosphere, 13, 2853–2867, https://doi.org/10.5194/tc-13-2853-2019, https://doi.org/10.5194/tc-13-2853-2019, 2019
Short summary
Short summary
We propose a new strategy called distributed temperature profiling (DTP) for improving the estimation of soil thermal properties through the use of an unprecedented number of laterally and vertically distributed temperature measurements. We tested a DTP system prototype by moving it sequentially across a discontinuous permafrost environment. The DTP enabled high-resolution identification of near-surface permafrost location and covariability with topography, vegetation, and soil properties.
Jianqiu Zheng, Peter E. Thornton, Scott L. Painter, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 16, 663–680, https://doi.org/10.5194/bg-16-663-2019, https://doi.org/10.5194/bg-16-663-2019, 2019
Short summary
Short summary
Arctic warming exposes soil carbon to increased degradation, increasing CO2 and CH4 emissions. Models underrepresent anaerobic decomposition that predominates wet soils. We simulated microbial growth, pH regulation, and anaerobic carbon decomposition in a new model, parameterized and validated with prior soil incubation data. The model accurately simulated CO2 production and strong influences of water content, pH, methanogen biomass, and competing electron acceptors on CH4 production.
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018, https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
Short summary
Ground thermal and moisture data are important indicators of the rapid permafrost changes in the Arctic. To better understand the changes, we need a comprehensive dataset across various sites. We synthesize permafrost-related data in the state of Alaska. It should be a valuable permafrost dataset that is worth maintaining in the future. On a wider level, it also provides a prototype of basic data collection and management for permafrost regions in general.
Gautam Bisht, William J. Riley, Glenn E. Hammond, and David M. Lorenzetti
Geosci. Model Dev., 11, 4085–4102, https://doi.org/10.5194/gmd-11-4085-2018, https://doi.org/10.5194/gmd-11-4085-2018, 2018
Short summary
Short summary
Most existing global land surface models used to study impacts of climate change on water resources routinely use different models for near-surface unsaturated soil and the deeper groundwater table. We developed a model that uses a unified treatment of soil hydrologic processes throughout the entire soil column. Using a calibrated drainage parameter, the new model is able to correctly predict deep water table depth as reported in an observationally constrained global dataset.
Nicholas C. Parazoo, Charles D. Koven, David M. Lawrence, Vladimir Romanovsky, and Charles E. Miller
The Cryosphere, 12, 123–144, https://doi.org/10.5194/tc-12-123-2018, https://doi.org/10.5194/tc-12-123-2018, 2018
Short summary
Short summary
Carbon models suggest the permafrost carbon feedback (soil carbon emissions from permafrost thaw) acts as a slow, unobservable leak. We investigate if permafrost temperature provides an observable signal to detect feedbacks. We find a slow carbon feedback in warm sub-Arctic permafrost soils, but potentially rapid feedback in cold Arctic permafrost. This is surprising since the cold permafrost region is dominated by tundra and underlain by deep, cold permafrost thought impervious to such changes.
Gautam Bisht, William J. Riley, Haruko M. Wainwright, Baptiste Dafflon, Fengming Yuan, and Vladimir E. Romanovsky
Geosci. Model Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018, https://doi.org/10.5194/gmd-11-61-2018, 2018
Short summary
Short summary
The land model integrated into the Energy Exascale Earth System Model was extended to include snow redistribution (SR) and lateral subsurface hydrologic and thermal processes. Simulation results at a polygonal tundra site near Barrow, Alaska, showed that inclusion of SR resulted in a better agreement with observations. Excluding lateral subsurface processes had a small impact on mean states but caused a large overestimation of spatial variability in soil moisture and temperature.
Gautam Bisht, Maoyi Huang, Tian Zhou, Xingyuan Chen, Heng Dai, Glenn E. Hammond, William J. Riley, Janelle L. Downs, Ying Liu, and John M. Zachara
Geosci. Model Dev., 10, 4539–4562, https://doi.org/10.5194/gmd-10-4539-2017, https://doi.org/10.5194/gmd-10-4539-2017, 2017
Short summary
Short summary
A fully coupled three-dimensional surface and subsurface land model, CP v1.0, was developed to simulate three-way interactions among river water, groundwater, and land surface processes. The coupled model can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.
Henrique F. Duarte, Brett M. Raczka, Daniel M. Ricciuto, John C. Lin, Charles D. Koven, Peter E. Thornton, David R. Bowling, Chun-Ta Lai, Kenneth J. Bible, and James R. Ehleringer
Biogeosciences, 14, 4315–4340, https://doi.org/10.5194/bg-14-4315-2017, https://doi.org/10.5194/bg-14-4315-2017, 2017
Short summary
Short summary
We evaluate the Community Land Model (CLM4.5) against observations at an old-growth coniferous forest site that is subjected to water stress each summer. We found that, after calibration, CLM was able to reasonably simulate the observed fluxes of energy and carbon, carbon stocks, carbon isotope ratios, and ecosystem response to water stress. This study demonstrates that carbon isotopes can expose structural weaknesses in CLM and provide a key constraint that may guide future model development.
Erik A. Hobbie, Janet Chen, Paul J. Hanson, Colleen M. Iversen, Karis J. McFarlane, Nathan R. Thorp, and Kirsten S. Hofmockel
Biogeosciences, 14, 2481–2494, https://doi.org/10.5194/bg-14-2481-2017, https://doi.org/10.5194/bg-14-2481-2017, 2017
Short summary
Short summary
We measured carbon and nitrogen isotope ratios (13C : 12C and 15N : 14N) in peat cores in a northern Minnesota bog to understand how climate, vegetation type, and decomposition affected C and N budgets over the last 9000 years. 13C : 12C patterns were primarily influenced by shifts in temperature, peatland vegetation and atmospheric CO2, whereas tree colonization and upland N influxes affected 15N : 14N ratios. Isotopic markers provided new insights into long-term patterns of CO2 and nitrogen losses.
Dóra Hidy, Zoltán Barcza, Hrvoje Marjanović, Maša Zorana Ostrogović Sever, Laura Dobor, Györgyi Gelybó, Nándor Fodor, Krisztina Pintér, Galina Churkina, Steven Running, Peter Thornton, Gianni Bellocchi, László Haszpra, Ferenc Horváth, Andrew Suyker, and Zoltán Nagy
Geosci. Model Dev., 9, 4405–4437, https://doi.org/10.5194/gmd-9-4405-2016, https://doi.org/10.5194/gmd-9-4405-2016, 2016
Short summary
Short summary
This paper provides detailed documentation on the changes implemented in the widely used biogeochemical model Biome-BGC. The version containing all improvements is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module). Case studies on forest, cropland, and grassland are presented to demonstrate the effect of developments on the simulation. By using Biome-BGCMuSo, it became possible to analyze the effects of different environmental conditions and human activities on the ecosystems.
Benjamin M. Jones, Carson A. Baughman, Vladimir E. Romanovsky, Andrew D. Parsekian, Esther L. Babcock, Eva Stephani, Miriam C. Jones, Guido Grosse, and Edward E. Berg
The Cryosphere, 10, 2673–2692, https://doi.org/10.5194/tc-10-2673-2016, https://doi.org/10.5194/tc-10-2673-2016, 2016
Short summary
Short summary
We combined field data collection with remote sensing data to document the presence and rapid degradation of permafrost in south-central Alaska during 1950–present. Ground temperature measurements confirmed permafrost presence in the region, but remotely sensed images showed that permafrost plateau extent decreased by 60 % since 1950. Better understanding these vulnerable permafrost deposits is important for predicting future permafrost extent across all permafrost regions that are warming.
William L. Cable, Vladimir E. Romanovsky, and M. Torre Jorgenson
The Cryosphere, 10, 2517–2532, https://doi.org/10.5194/tc-10-2517-2016, https://doi.org/10.5194/tc-10-2517-2016, 2016
Short summary
Short summary
Permafrost temperatures in Alaska are increasing, yet in many areas we lack data needed to assess future changes and potential risks. In this paper we show that classifying the landscape into landcover types is an effective way to scale up permafrost temperature data collected from field monitoring sites. Based on these results, a map of mean annual ground temperature ranges at 1 m depth was produced. The map should be useful for land use decision making and identifying potential risk areas.
Brett Raczka, Henrique F. Duarte, Charles D. Koven, Daniel Ricciuto, Peter E. Thornton, John C. Lin, and David R. Bowling
Biogeosciences, 13, 5183–5204, https://doi.org/10.5194/bg-13-5183-2016, https://doi.org/10.5194/bg-13-5183-2016, 2016
Short summary
Short summary
We use carbon isotopes of CO2 to improve the performance of a land surface model, a component with earth system climate models. We found that isotope observations can provide important information related to the exchange of carbon and water from vegetation driven by environmental stress from low atmospheric moisture and nitrogen limitation. It follows that isotopes have a unique potential to improve model performance and provide insight into land surface model development.
Guoping Tang, Jianqiu Zheng, Xiaofeng Xu, Ziming Yang, David E. Graham, Baohua Gu, Scott L. Painter, and Peter E. Thornton
Biogeosciences, 13, 5021–5041, https://doi.org/10.5194/bg-13-5021-2016, https://doi.org/10.5194/bg-13-5021-2016, 2016
Short summary
Short summary
We extend the Community Land Model coupled with carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) describes the observed pH evolution. Fe reduction can increase pH toward neutral pH to facilitate methanogenesis.
Jitendra Kumar, Forrest M. Hoffman, William W. Hargrove, and Nathan Collier
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-36, https://doi.org/10.5194/essd-2016-36, 2016
Preprint withdrawn
Short summary
Short summary
The Eddy-covariance measurements from global network of flux sites help understand the emergent ecosystem properties. This study presents an approach to assess the representativeness of the observations at the flux sites and upscale the measured fluxes to develop time series of high resolution global gridded data set. Upscaled gross primary productivity data sets captures the heterogeneity of terrestrial ecosystem and reflects the seasonal and interannual variability observed at flux sites.
Xiaofeng Xu, Fengming Yuan, Paul J. Hanson, Stan D. Wullschleger, Peter E. Thornton, William J. Riley, Xia Song, David E. Graham, Changchun Song, and Hanqin Tian
Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, https://doi.org/10.5194/bg-13-3735-2016, 2016
Short summary
Short summary
Accurately projecting future climate change requires a good methane modeling. However, how good the current models are and what are the key improvements needed remain unclear. This paper reviews the 40 published methane models to characterize the strengths and weakness of current methane models and further lay out the roadmap for future model improvements.
Guoping Tang, Fengming Yuan, Gautam Bisht, Glenn E. Hammond, Peter C. Lichtner, Jitendra Kumar, Richard T. Mills, Xiaofeng Xu, Ben Andre, Forrest M. Hoffman, Scott L. Painter, and Peter E. Thornton
Geosci. Model Dev., 9, 927–946, https://doi.org/10.5194/gmd-9-927-2016, https://doi.org/10.5194/gmd-9-927-2016, 2016
Short summary
Short summary
We demonstrate that CLM-PFLOTRAN predictions are consistent with CLM4.5 for Arctic, temperate, and tropical sites. A tight relative tolerance may be needed to avoid false convergence when scaling, clipping, or log transformation is used to avoid negative concentration in implicit time stepping and Newton-Raphson methods. The log transformation method is accurate and robust while relaxing relative tolerance or using the clipping or scaling method can result in efficient solutions.
D. R. Harp, A. L. Atchley, S. L. Painter, E. T. Coon, C. J. Wilson, V. E. Romanovsky, and J. C. Rowland
The Cryosphere, 10, 341–358, https://doi.org/10.5194/tc-10-341-2016, https://doi.org/10.5194/tc-10-341-2016, 2016
Short summary
Short summary
This paper investigates the uncertainty associated with permafrost thaw projections at an intensively monitored site. Permafrost thaw projections are simulated using a thermal hydrology model forced by a worst-case carbon emission scenario. The uncertainties associated with active layer depth, saturation state, thermal regime, and thaw duration are quantified and compared with the effects of climate model uncertainty on permafrost thaw projections.
J. Mao, D. M. Ricciuto, P. E. Thornton, J. M. Warren, A. W. King, X. Shi, C. M. Iversen, and R. J. Norby
Biogeosciences, 13, 641–657, https://doi.org/10.5194/bg-13-641-2016, https://doi.org/10.5194/bg-13-641-2016, 2016
Short summary
Short summary
The aim of this study is to implement, calibrate and evaluate the CLM4 against carbon and hydrology observations from a shading and labeling experiment in a stand of young loblolly pines. We found a combination of parameters measured on-site and calibration targeting biomass, transpiration, and 13C discrimination gave good agreement with pretreatment measurements. We also used observations from the experiment to develop a conceptual model of short-term photosynthate storage and transport.
X. Shi, P. E. Thornton, D. M. Ricciuto, P. J. Hanson, J. Mao, S. D. Sebestyen, N. A. Griffiths, and G. Bisht
Biogeosciences, 12, 6463–6477, https://doi.org/10.5194/bg-12-6463-2015, https://doi.org/10.5194/bg-12-6463-2015, 2015
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary
Short summary
This paper introduces the new database of the Global Terrestrial Network for Permafrost (GTN-P) on permafrost temperature and active layer thickness data. It describes the operability of the Data Management System and the data quality. By applying statistics on GTN-P metadata, we analyze the spatial sample representation of permafrost monitoring sites. Comparison with environmental variables and climate projection data enable identification of potential future research locations.
A. L. Atchley, S. L. Painter, D. R. Harp, E. T. Coon, C. J. Wilson, A. K. Liljedahl, and V. E. Romanovsky
Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, https://doi.org/10.5194/gmd-8-2701-2015, 2015
Short summary
Short summary
Development and calibration of a process-rich model representation of thaw-depth dynamics in Arctic tundra is presented. Improved understanding of polygonal tundra thermal hydrology processes, of thermal conduction, surface and subsurface saturation and snowpack dynamics is gained by using measured field data to calibrate and refine model structure. The refined model is then used identify future data needs and observational studies.
W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt
Geosci. Model Dev., 8, 2203–2219, https://doi.org/10.5194/gmd-8-2203-2015, https://doi.org/10.5194/gmd-8-2203-2015, 2015
Short summary
Short summary
The integrated Earth system model (iESM) has been developed as a
new tool for projecting the joint human-climate system. The
iESM is based upon coupling an integrated assessment model (IAM)
and an Earth system model (ESM) into a common modeling
infrastructure. By introducing heretofore-omitted
feedbacks between natural and societal drivers in iESM, we can improve
scientific understanding of the human-Earth system
dynamics.
C. Safta, D. M. Ricciuto, K. Sargsyan, B. Debusschere, H. N. Najm, M. Williams, and P. E. Thornton
Geosci. Model Dev., 8, 1899–1918, https://doi.org/10.5194/gmd-8-1899-2015, https://doi.org/10.5194/gmd-8-1899-2015, 2015
Short summary
Short summary
In this paper we propose a probabilistic framework for an uncertainty quantification study of a carbon cycle model and focus on the comparison between steady-state and transient
simulation setups. We study model parameters via global sensitivity analysis and employ a Bayesian approach to calibrate these parameters using NEE observations at the Harvard Forest site. The calibration results are then used to assess the predictive skill of the model via posterior predictive checks.
A. V. Di Vittorio, L. P. Chini, B. Bond-Lamberty, J. Mao, X. Shi, J. Truesdale, A. Craig, K. Calvin, A. Jones, W. D. Collins, J. Edmonds, G. C. Hurtt, P. Thornton, and A. Thomson
Biogeosciences, 11, 6435–6450, https://doi.org/10.5194/bg-11-6435-2014, https://doi.org/10.5194/bg-11-6435-2014, 2014
Short summary
Short summary
Economic models provide scenarios of land use and greenhouse gas emissions to earth system models to project global change. We found, and partially addressed, inconsistencies in land cover between an economic and an earth system model that effectively alter a prescribed scenario, causing significant differences in projected terrestrial carbon and atmospheric CO2 between prescribed and altered scenarios. We outline a solution to this current problem in scenario-based global change projections.
G. Bisht and W. J. Riley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-12833-2014, https://doi.org/10.5194/hessd-11-12833-2014, 2014
Revised manuscript has not been submitted
B. Bond-Lamberty, K. Calvin, A. D. Jones, J. Mao, P. Patel, X. Y. Shi, A. Thomson, P. Thornton, and Y. Zhou
Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014, https://doi.org/10.5194/gmd-7-2545-2014, 2014
G. S. H. Pau, G. Bisht, and W. J. Riley
Geosci. Model Dev., 7, 2091–2105, https://doi.org/10.5194/gmd-7-2091-2014, https://doi.org/10.5194/gmd-7-2091-2014, 2014
X. Yang, P. E. Thornton, D. M. Ricciuto, and W. M. Post
Biogeosciences, 11, 1667–1681, https://doi.org/10.5194/bg-11-1667-2014, https://doi.org/10.5194/bg-11-1667-2014, 2014
K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa
Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013, https://doi.org/10.5194/cp-9-1697-2013, 2013
X. Yang, W. M. Post, P. E. Thornton, and A. Jain
Biogeosciences, 10, 2525–2537, https://doi.org/10.5194/bg-10-2525-2013, https://doi.org/10.5194/bg-10-2525-2013, 2013
T. W. Hudiburg, B. E. Law, and P. E. Thornton
Biogeosciences, 10, 453–470, https://doi.org/10.5194/bg-10-453-2013, https://doi.org/10.5194/bg-10-453-2013, 2013
Related subject area
Frozen Ground
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
Spectral Induced Polarization survey for the estimation of hydrogeological parameters in an active rock glacier
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
High-resolution 4D ERT monitoring of recently deglaciated sediments undergoing freeze-thaw transitions in the High Arctic
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Post-Little Ice Age rock wall permafrost evolution in Norway
Modelling rock glacier ice content based on InSAR-derived velocity, Khumbu and Lhotse valleys, Nepal
The temperature-dependent shear strength of ice-filled joints in rock mass considering the effect of joint roughness, opening and shear rates
Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada
Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data
Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 2: An upscaling strategy of geophysical measurements to the catchment scale at two study sites
Long-term analysis of cryoseismic events and associated ground thermal stress in Adventdalen, Svalbard
Seismic physics-based characterization of permafrost sites using surface waves
Three in one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai–Tibet Plateau
Surface temperatures and their influence on the permafrost thermal regime in high-Arctic rock walls on Svalbard
Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Passive seismic recording of cryoseisms in Adventdalen, Svalbard
Projecting circum-Arctic excess-ground-ice melt with a sub-grid representation in the Community Land Model
Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada
The ERA5-Land soil temperature bias in permafrost regions
Brief Communication: The reliability of gas extraction techniques for analysing CH4 and N2O compositions in gas trapped in permafrost ice wedges
Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen
Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites
Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis
Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps
New ground ice maps for Canada using a paleogeographic modelling approach
Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada)
Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada
Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls
Microtopographic control on the ground thermal regime in ice wedge polygons
Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau
Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau
Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals
Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska
Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes
A new map of permafrost distribution on the Tibetan Plateau
Distinguishing between old and modern permafrost sources in the northeast Siberian land–shelf system with compound-specific δ2H analysis
Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century
New observations indicate the possible presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco)
Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia
Wind-driven snow conditions control the occurrence of contemporary marginal mountain permafrost in the Chic-Choc Mountains, south-eastern Canada: a case study from Mont Jacques-Cartier
Numerical modelling of convective heat transport by air flow in permafrost talus slopes
Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland
Response of seasonal soil freeze depth to climate change across China
Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard
Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region
Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024, https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary
Short summary
Maps that show ground ice in permafrost at circumpolar or hemispherical scales offer only general depictions of broad patterns in ice content. In this paper, we show that using more detailed surficial geology in a ground ice computer model significantly improves the depiction of ground ice and makes the mapping useful for assessments of the effects of permafrost thaw and for reconnaissance planning of infrastructure routing.
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
EGUsphere, https://doi.org/10.5194/egusphere-2024-1444, https://doi.org/10.5194/egusphere-2024-1444, 2024
Short summary
Short summary
We quantify hydrogeological properties in an active rock glacier by using electrical conductivity and induced polarization in an imaging framework and we used geophysical monitoring to track tracer test injections. The water content is spatially variable, and the water can move rapidly with a velocity in the range of cm/s through the active layer of the rock glacier. Hydrogeological parameters were linked to kinematic data to investigate the role of water content on rock glacier movement.
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024, https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Short summary
Climate warming is thawing permafrost that makes up palsa (frost mound) peatlands, risking ecosystem collapse and carbon release as methane. We measure this regional degradation using radar satellite technology to examine ground elevation changes and show how terrain roughness measurements can be used to estimate local permafrost damage. We find that over half of Sweden's largest palsa peatlands are degrading, with the worse impacts to the north linked to increased winter precipitation.
Mihai O. Cimpoiasu, Oliver Kuras, Harry Harrison, Paul B. Wilkinson, Philip Meldrum, Jonathan E. Chambers, Dane Liljestrand, Carlos Oroza, Steven K. Schmidt, Pacifica Sommers, Lara Vimercati, Trevor P. Irons, Zhou Lyu, Adam Solon, and James A. Bradley
EGUsphere, https://doi.org/10.5194/egusphere-2024-350, https://doi.org/10.5194/egusphere-2024-350, 2024
Short summary
Short summary
Young Arctic sediments, uncovered by retreating glaciers, are in continuous development, shaped by how water infiltrates and is stored in the near subsurface. Harsh weather conditions at high latitudes make direct observation of these environments extremely difficult. To address this, we deployed two automated sensor installations in Aug 21 on a glacier forefield in Svalbard. These recorded continuously for one year revealing unprecedented images of the ground’s freeze-thaw transition.
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024, https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Short summary
Using a model that can simulate the evolution of Arctic permafrost over centuries to millennia, we find that post-industrialization permafrost warming has three "hotspots" in NE Canada, N Alaska, and W Siberia. The extent of near-surface permafrost has decreased substantially since 1850, with the largest area losses occurring in the last 50 years. The simulations also show that volcanic eruptions have in some cases counteracted the loss of near-surface permafrost for a few decades.
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023, https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Short summary
Frozen saline pore water, left over from post-glacial marine ingression, was found in shallow permafrost in a Svalbard fjord valley. This suggests that freezing occurred immediately after marine regression due to isostatic rebound. We conducted top-down freezing simulations, which confirmed that with Early to mid-Holocene temperatures (e.g. −4 °C), freezing could progress down to 20–40 m within 200 years. This, in turn, could inhibit flow through the sediment, therefore preserving saline fluids.
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023, https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023, https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Short summary
We assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. Ground temperature is modelled using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles. Permafrost probably occurs at most sites. All simulations show increasing ground temperature from the 1980s. Our simulations show that rock wall permafrost with a temperature of −1 °C at 20 m depth could thaw at this depth within 50 years.
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023, https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
Shibing Huang, Haowei Cai, Zekun Xin, and Gang Liu
The Cryosphere, 17, 1205–1223, https://doi.org/10.5194/tc-17-1205-2023, https://doi.org/10.5194/tc-17-1205-2023, 2023
Short summary
Short summary
In this study, the warming degradation mechanism of ice-filled joints is revealed, and the effect of temperature, normal stress, shear rate and joint opening on the shear strength of rough ice-filled joints is investigated. The shear rupture modes include shear cracking of joint ice and debonding of the ice–rock interface, which is related to the above factors. The bonding strength of the ice–rock interface is larger than the shear strength of joint ice when the temperature is below −1 ℃.
Yifeng Wang, Robert G. Way, Jordan Beer, Anika Forget, Rosamond Tutton, and Meredith C. Purcell
The Cryosphere, 17, 63–78, https://doi.org/10.5194/tc-17-63-2023, https://doi.org/10.5194/tc-17-63-2023, 2023
Short summary
Short summary
Peatland permafrost in northeastern Canada has been misrepresented by models, leading to significant underestimates of peatland permafrost and permafrost distribution along the Labrador Sea coastline. Our multi-stage, multi-mapper, consensus-based inventorying process, supported by field- and imagery-based validation efforts, identifies peatland permafrost complexes all along the coast. The highest density of complexes is found to the south of the current sporadic discontinuous permafrost limit.
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040, https://doi.org/10.5194/tc-16-5023-2022, https://doi.org/10.5194/tc-16-5023-2022, 2022
Short summary
Short summary
This study used the sine-wave exponential model and long-term water stable isotopic data to estimate water mean residence time (MRT) and its influencing factors in a high-altitude permafrost catchment (5300 m a.s.l.) in the central Tibetan Plateau (TP). MRT for stream and supra-permafrost water was estimated at 100 and 255 d, respectively. Climate and vegetation factors affected the MRT of stream and supra-permafrost water mainly by changing the thickness of the permafrost active layer.
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere, 16, 2701–2708, https://doi.org/10.5194/tc-16-2701-2022, https://doi.org/10.5194/tc-16-2701-2022, 2022
Short summary
Short summary
We implemented a new multi-layer snow scheme in the land surface scheme of ERA5-Land with revised snow densification parameterizations. The revised HTESSEL improved the representation of soil temperature in permafrost regions compared to ERA5-Land; in particular, warm bias in winter was significantly reduced, and the resulting modeled near-surface permafrost extent was improved.
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere, 16, 2025–2050, https://doi.org/10.5194/tc-16-2025-2022, https://doi.org/10.5194/tc-16-2025-2022, 2022
Short summary
Short summary
We have investigated a long-term record of ground vibrations, recorded by a seismic array installed in Adventdalen, Svalbard. This record contains a large number of
frost quakes, a type of ground shaking that can be produced by cracks that form as the ground cools rapidly. We use underground temperatures measured in a nearby borehole to model forces of thermal expansion and contraction that can cause these cracks. We also use the seismic measurements to estimate where these cracks occurred.
Hongwei Liu, Pooneh Maghoul, and Ahmed Shalaby
The Cryosphere, 16, 1157–1180, https://doi.org/10.5194/tc-16-1157-2022, https://doi.org/10.5194/tc-16-1157-2022, 2022
Short summary
Short summary
The knowledge of physical and mechanical properties of permafrost and its location is critical for the management of permafrost-related geohazards. Here, we developed a hybrid inverse and multiphase poromechanical approach to quantitatively estimate the physical and mechanical properties of a permafrost site. Our study demonstrates the potential of surface wave techniques coupled with our proposed data-processing algorithm to characterize a permafrost site more accurately.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, Helene Meling Stemland, and Tor Arne Johansen
The Cryosphere, 15, 283–302, https://doi.org/10.5194/tc-15-283-2021, https://doi.org/10.5194/tc-15-283-2021, 2021
Short summary
Short summary
A series of unusual ground motion signatures were identified in geophone recordings at a frost polygon site in Adventdalen on Svalbard. By analysing where the ground motion originated in time and space, we are able to classify them as cryoseisms, also known as frost quakes, a ground-cracking phenomenon that occurs as a result of freezing processes. The waves travelling through the ground produced by these frost quakes also allow us to measure the structure of the permafrost in the near surface.
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020, https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary
Short summary
A sub-grid representation of excess ground ice in the Community Land Model (CLM) is developed as novel progress in modeling permafrost thaw and its impacts under the warming climate. The modeled permafrost degradation with sub-grid excess ice follows the pathway that continuous permafrost transforms into discontinuous permafrost before it disappears, including surface subsidence and talik formation, which are highly permafrost-relevant landscape changes excluded from most land models.
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Short summary
This study reports that ERA5-Land (ERA5L) soil temperature bias in permafrost regions correlates with the bias in air temperature and with maximum snow height. While global reanalyses are important drivers for permafrost study, ERA5L soil data are not well suited for directly informing permafrost research decision making due to their warm bias in winter. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.
Ji-Woong Yang, Jinho Ahn, Go Iwahana, Sangyoung Han, Kyungmin Kim, and Alexander Fedorov
The Cryosphere, 14, 1311–1324, https://doi.org/10.5194/tc-14-1311-2020, https://doi.org/10.5194/tc-14-1311-2020, 2020
Short summary
Short summary
Thawing permafrost may lead to decomposition of soil carbon and nitrogen and emission of greenhouse gases. Thus, methane and nitrous oxide compositions in ground ice may provide information on their production mechanisms in permafrost. We test conventional wet and dry extraction methods. We find that both methods extract gas from the easily extractable parts of the ice and yield similar results for mixing ratios. However, both techniques are unable to fully extract gas from the ice.
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Short summary
We present a long-term multisite electrical resistivity tomography monitoring network (more than 1000 datasets recorded from six mountain permafrost sites). Despite harsh and remote measurement conditions, the datasets are of good quality and show consistent spatio-temporal variations yielding significant added value to point-scale borehole information. Observed long-term trends are similar for all permafrost sites, showing ongoing permafrost thaw and ground ice loss due to climatic conditions.
Jing Tao, Randal D. Koster, Rolf H. Reichle, Barton A. Forman, Yuan Xue, Richard H. Chen, and Mahta Moghaddam
The Cryosphere, 13, 2087–2110, https://doi.org/10.5194/tc-13-2087-2019, https://doi.org/10.5194/tc-13-2087-2019, 2019
Short summary
Short summary
The active layer thickness (ALT) in middle-to-high northern latitudes from 1980 to 2017 was produced at 81 km2 resolution by a global land surface model (NASA's CLSM) with forcing fields from a reanalysis data set, MERRA-2. The simulated permafrost distribution and ALTs agree reasonably well with an observation-based map and in situ measurements, respectively. The accumulated above-freezing air temperature and maximum snow water equivalent explain most of the year-to-year variability of ALT.
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
H. Brendan O'Neill, Stephen A. Wolfe, and Caroline Duchesne
The Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019, https://doi.org/10.5194/tc-13-753-2019, 2019
Short summary
Short summary
In this paper, we present new models to depict ground ice in permafrost in Canada, incorporating knowledge from recent studies. The model outputs we present reproduce observed regional ground ice conditions and are generally comparable with previous mapping. However, our results are more detailed and more accurately reflect ground ice conditions in many regions. The new mapping is an important step toward understanding terrain response to permafrost degradation in Canada.
Stephanie Coulombe, Daniel Fortier, Denis Lacelle, Mikhail Kanevskiy, and Yuri Shur
The Cryosphere, 13, 97–111, https://doi.org/10.5194/tc-13-97-2019, https://doi.org/10.5194/tc-13-97-2019, 2019
Short summary
Short summary
This study provides a detailed description of relict glacier ice preserved in the permafrost of Bylot Island (Nunavut). We demonstrate that the 18O composition (-34.0 0.4 ‰) of the ice is consistent with the late Pleistocene age ice in the Barnes Ice Cap. As most of the glaciated Arctic landscapes are still strongly determined by their glacial legacy, the melting of these large ice bodies could have significant impacts on permafrost geosystem landscape dynamics and ecosystems.
Robert G. Way, Antoni G. Lewkowicz, and Yu Zhang
The Cryosphere, 12, 2667–2688, https://doi.org/10.5194/tc-12-2667-2018, https://doi.org/10.5194/tc-12-2667-2018, 2018
Short summary
Short summary
Isolated patches of permafrost in southeast Labrador are among the southernmost lowland permafrost features in Canada. Local characteristics at six sites were investigated from Cartwright, NL (~ 54° N) to Blanc-Sablon, QC (~ 51° N). Annual ground temperatures varied from −0.7 °C to −2.3 °C with permafrost thicknesses of 1.7–12 m. Ground temperatures modelled for two sites showed permafrost disappearing at the southern site by 2060 and persistence beyond 2100 at the northern site only for RCP2.6.
Zeze Ran and Gengnian Liu
The Cryosphere, 12, 2327–2340, https://doi.org/10.5194/tc-12-2327-2018, https://doi.org/10.5194/tc-12-2327-2018, 2018
Short summary
Short summary
This article provides the first rock glacier inventory of Daxue Shan, south- eastern Tibetan Plateau. This study provides important data for exploring the relation between maritime periglacial environments and the development of rock glaciers on the south-eastern Tibetan Plateau (TP). It may also highlight the characteristics typical of rock glaciers found in a maritime setting.
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary
Short summary
We investigate the relationship between ice wedge polygon topography and near-surface ground temperature using a combination of field work and numerical modeling. We analyze a year-long record of ground temperature across a low-centered polygon, then demonstrate that lower rims and deeper troughs promote warmer conditions in the ice wedge in winter. This finding implies that ice wedge cracking and growth, which are driven by cold conditions, can be impeded by rim erosion or trough subsidence.
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere, 12, 657–673, https://doi.org/10.5194/tc-12-657-2018, https://doi.org/10.5194/tc-12-657-2018, 2018
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and applied it in order to simulate the long-term change of frozen ground and its effect on hydrology in the upper Heihe basin. Results showed that the permafrost area shrank by 8.8%, and the frozen depth of seasonally frozen ground decreased. Runoff in cold seasons and annual liquid soil moisture increased due to frozen soils change. Groundwater recharge was enhanced due to the degradation of permafrost.
Youhua Ran, Xin Li, and Guodong Cheng
The Cryosphere, 12, 595–608, https://doi.org/10.5194/tc-12-595-2018, https://doi.org/10.5194/tc-12-595-2018, 2018
Short summary
Short summary
Approximately 88 % of the permafrost area in the 1960s has been thermally degraded in the past half century over the Qinghai–Tibetan Plateau. The mean elevations of the very cold, cold, cool, warm, very warm, and likely thawing permafrost areas increased by 88 m, 97 m, 155 m, 185 m, 161 m, and 250 m, respectively. This degradation may lead to increases in risks to infrastructure, flood, reductions in ecosystem resilience, and positive climate feedback.
Lin Liu and Kristine M. Larson
The Cryosphere, 12, 477–489, https://doi.org/10.5194/tc-12-477-2018, https://doi.org/10.5194/tc-12-477-2018, 2018
Short summary
Short summary
We demonstrate the use of reflected GPS signals to measure elevation changes over a permafrost area in northern Alaska. For the first time, we construct a daily-sampled time series of elevation changes over 12 summers. Our results show regular thaw subsidence within each summer and a secular subsidence trend of 0.3 cm per year. This method promises a new way to utilize GPS data in cold regions for studying frozen ground consistently and sustainably over a long time.
Yonghong Yi, John S. Kimball, Richard H. Chen, Mahta Moghaddam, Rolf H. Reichle, Umakant Mishra, Donatella Zona, and Walter C. Oechel
The Cryosphere, 12, 145–161, https://doi.org/10.5194/tc-12-145-2018, https://doi.org/10.5194/tc-12-145-2018, 2018
Short summary
Short summary
An important feature of the Arctic is large spatial heterogeneity in active layer conditions. We developed a modeling framework integrating airborne longwave radar and satellite data to investigate active layer thickness (ALT) sensitivity to landscape heterogeneity in Alaska. We find uncertainty in spatial and vertical distribution of soil organic carbon is the largest factor affecting ALT accuracy. Advances in remote sensing of soil conditions will enable more accurate ALT predictions.
Benjamin Mewes, Christin Hilbich, Reynald Delaloye, and Christian Hauck
The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, https://doi.org/10.5194/tc-11-2957-2017, 2017
Defu Zou, Lin Zhao, Yu Sheng, Ji Chen, Guojie Hu, Tonghua Wu, Jichun Wu, Changwei Xie, Xiaodong Wu, Qiangqiang Pang, Wu Wang, Erji Du, Wangping Li, Guangyue Liu, Jing Li, Yanhui Qin, Yongping Qiao, Zhiwei Wang, Jianzong Shi, and Guodong Cheng
The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, https://doi.org/10.5194/tc-11-2527-2017, 2017
Short summary
Short summary
The area and distribution of permafrost on the Tibetan Plateau are unclear and controversial. This paper generated a benchmark map based on the modified remote sensing products and validated it using ground-based data sets. Compared with two existing maps, the new map performed better and showed that permafrost covered areas of 1.06 × 106 km2. The results provide more detailed information on the permafrost distribution and basic data for use in future research on the Tibetan Plateau permafrost.
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017, https://doi.org/10.5194/tc-11-1879-2017, 2017
Florence Magnin, Jean-Yves Josnin, Ludovic Ravanel, Julien Pergaud, Benjamin Pohl, and Philip Deline
The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, https://doi.org/10.5194/tc-11-1813-2017, 2017
Short summary
Short summary
Permafrost degradation in high mountain rock walls provokes destabilisation, constituting a threat for human activities. In the Mont Blanc massif, more than 700 rockfalls have been inventoried in recent years (2003, 2007–2015). Understanding permafrost evolution is thus crucial to sustain this densely populated area. This study investigates the changes in rock wall permafrost from 1850 to the recent period and possible optimistic or pessimistic evolutions during the 21st century.
Gonçalo Vieira, Carla Mora, and Ali Faleh
The Cryosphere, 11, 1691–1705, https://doi.org/10.5194/tc-11-1691-2017, https://doi.org/10.5194/tc-11-1691-2017, 2017
Short summary
Short summary
The Toubkal is the highest massif in North Africa (4167 m). Landforms and deposits above 3000 m show the effects of frost action in the present-day geomorphological dynamics, but data on ground temperatures were lacking. In this study ground surface temperature data measured across an altitudinal transect are presented and analysed for the first time. The highlight is the possible occurrence of permafrost at an elevation of 3800 m, which may be of high ecological and hydrological significance.
Sebastian Westermann, Maria Peter, Moritz Langer, Georg Schwamborn, Lutz Schirrmeister, Bernd Etzelmüller, and Julia Boike
The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, https://doi.org/10.5194/tc-11-1441-2017, 2017
Short summary
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
Gautier Davesne, Daniel Fortier, Florent Domine, and James T. Gray
The Cryosphere, 11, 1351–1370, https://doi.org/10.5194/tc-11-1351-2017, https://doi.org/10.5194/tc-11-1351-2017, 2017
Short summary
Short summary
This study presents data from Mont Jacques-Cartier, the highest summit in the Appalachians of south-eastern Canada, to demonstrate that the occurrence of contemporary permafrost body is associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. This study is an important preliminary step in modelling the regional spatial distribution of permafrost on the highest summits in eastern North America.
Jonas Wicky and Christian Hauck
The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, https://doi.org/10.5194/tc-11-1311-2017, 2017
Short summary
Short summary
Talus slopes are a widespread geomorphic feature, which may show permafrost conditions even at low elevation due to cold microclimates induced by a gravity-driven internal air circulation. We show for the first time a numerical simulation of this internal air circulation of a field-scale talus slope. Results indicate that convective heat transfer leads to a pronounced ground cooling in the lower part of the talus slope favoring the persistence of permafrost.
Graham L. Gilbert, Stefanie Cable, Christine Thiel, Hanne H. Christiansen, and Bo Elberling
The Cryosphere, 11, 1265–1282, https://doi.org/10.5194/tc-11-1265-2017, https://doi.org/10.5194/tc-11-1265-2017, 2017
Short summary
Short summary
We reconstruct the Holocene development of the Zackenberg River delta (northeast Greenland) using a combination of sedimentology, cryostratigraphy, and geochronology. We distinguish four major depositional environments and identify three cryofacies. We apply the principles of cryostratigraphy to infer the aggradational history of permafrost. This paper contains an archive of ground ice in epigenetic permafrost in northeast Greenland.
Xiaoqing Peng, Tingjun Zhang, Oliver W. Frauenfeld, Kang Wang, Bin Cao, Xinyue Zhong, Hang Su, and Cuicui Mu
The Cryosphere, 11, 1059–1073, https://doi.org/10.5194/tc-11-1059-2017, https://doi.org/10.5194/tc-11-1059-2017, 2017
Short summary
Short summary
Previous research has paid significant attention to permafrost, e.g. active layer thickness, soil temperature, area extent, and associated degradation leading to other changes. However, less focus has been given to seasonally frozen ground and vast area extent. We combined data from more than 800 observation stations, as well as gridded data, to investigate soil freeze depth across China. The results indicate that soil freeze depth decreases with climate warming.
Carina Schuh, Andrew Frampton, and Hanne Hvidtfeldt Christiansen
The Cryosphere, 11, 635–651, https://doi.org/10.5194/tc-11-635-2017, https://doi.org/10.5194/tc-11-635-2017, 2017
Short summary
Short summary
This study investigates how soil moisture retention characteristics impact ice and moisture redistribution, heat transport and active layer thickness under permafrost conditions. This is relevant for understanding how climate change interacts with permafrost, which is important because there is much stored carbon in permafrost, which may be released to the atmosphere as permafrost degrades and may then act to further enhance climate warming.
Stephan Gruber, Renate Fleiner, Emilie Guegan, Prajjwal Panday, Marc-Olivier Schmid, Dorothea Stumm, Philippus Wester, Yinsheng Zhang, and Lin Zhao
The Cryosphere, 11, 81–99, https://doi.org/10.5194/tc-11-81-2017, https://doi.org/10.5194/tc-11-81-2017, 2017
Short summary
Short summary
We review what can be inferred about permafrost in the mountains of the Hindu Kush Himalaya region. This is important because the area of permafrost exceeds that of glaciers in this region. Climate change will produce diverse permafrost-related impacts on vegetation, water quality, geohazards, and livelihoods. To mitigate this, a better understanding of high-elevation permafrost in subtropical latitudes as well as the pathways connecting environmental change and human livelihoods, is needed.
Amund F. Borge, Sebastian Westermann, Ingvild Solheim, and Bernd Etzelmüller
The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, https://doi.org/10.5194/tc-11-1-2017, 2017
Short summary
Short summary
Palsas and peat plateaus are permafrost landforms in subarctic mires which constitute sensitive ecosystems with strong significance for vegetation, wildlife, hydrology and carbon cycle. We have systematically mapped the occurrence of palsas and peat plateaus in northern Norway by interpretation of aerial images from the 1950s until today. The results show that about half of the area of palsas and peat plateaus has disappeared due to lateral erosion and melting of ground ice in the last 50 years.
Cited articles
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015.
Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol. Earth Syst. Sci., 11, 703–710, https://doi.org/10.5194/hess-11-703-2007, 2007.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Bockheim, J. G., Hinkel, K. M., and Nelson, F. E.: Soils of the Barrow region, Alaska, Polar Geogr., 25, 163–181, https://doi.org/10.1080/10889370109377711, 2001.
Collier, N. and Kumar, J.: MeshMaker: Configurable Meshing Framework for Eco-Hydrology Models, Tech. Rep. ORNL/TM-2016/46, Oak Ridge National Laboratory, Oak Ridge, TN, USA, https://doi.org/10.5440/1237353, 2016.
Cresto Aleina, F., Brovkin, V., Muster, S., Boike, J., Kutzbach, L., Sachs, T., and Zuyev, S.: A stochastic model for the polygonal tundra based on Poisson–Voronoi diagrams, Earth Syst. Dynam., 4, 187–198, https://doi.org/10.5194/esd-4-187-2013, 2013.
Dafflon, B., Hubbard, S., Ulrich, C., Peterson, J., Wu, Y., Wainwright, H., and Kneafsey, T. J.: Geophysical estimation of shallow permafrost distribution and properties in an ice-wedge polygon-dominated Arctic tundra region, Geophysics, 81, WA247–WA263, https://doi.org/10.1190/geo2015-0175.1, 2016.
French, H. M.: Thermokarst, John Wiley & Sons Ltd., West Sussex, England, 186–215, https://doi.org/10.1002/9781118684931.ch8, 2007.
Hammond, G., Andre, B., Bisht, G., Collier, N., Karra, S., Kumar, J., Lichtner, P., and Mills, R.: PFLOTRAN: A Massively Parallel Reactive Flow and Transport Model for describing Surface and Subsurface Processes, http://www.pflotran.org/, last access: 21 September 2016.
Hammond, G. E., Lichtner, P. C., and Mills, R. T.: Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN, Water Resour. Res., 50, 208–228, https://doi.org/10.1002/2012WR013483, 2014.
Harp, D. R., Atchley, A. L., Painter, S. L., Coon, E. T., Wilson, C. J., Romanovsky, V. E., and Rowland, J. C.: Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis, The Cryosphere, 10, 341–358, https://doi.org/10.5194/tc-10-341-2016, 2016.
Heuvelmans, G., Muys, B., and Feyen, J.: Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets, J. Hydrol. 319, 245–265, https://doi.org/10.1016/j.jhydrol.2005.07.030, 2006.
Hinzman, L. D., Kane, D., Gieck, R., and Everett, K.: Hydrologic and thermal properties of the active layer in the Alaskan Arctic, Cold Reg. Sci. Technol., 19, 95–110, https://doi.org/10.1016/0165-232X(91)90001-W, 1991.
Hinzman, L. D., Goering, D. J., and Kane, D. L.: A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions, J. Geophys. Res., 103, 28975–28991, https://doi.org/10.1029/98JD01731, 1998.
Hinzman, L. D., Romanovsky, V., Cable, W., and Busey, B.: Continuous Snow Depth, Intensive Site 1, Barrow, Alaska [Data], Next Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1163347, 2014a.
Hinzman, L. D., Romanovsky, V., Cable, W., and Busey, B.: Surface Meteorology, Barrow, Alaska, Area A, B, C and D [Data], Next Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1164893, 2014b.
Hobbie, S. E., Schimel, J. P., Trumbore, S. E., and Randerson, J. R.: Controls over carbon storage and turnover in high-latitude soils, Global Change Biol., 6, 196–210, https://doi.org/10.1046/j.1365-2486.2000.06021.x, 2000.
Hubbard, S., Gangodagamage, C., Dafflon, B., Wainwright, H., Peterson, J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Rowland, J., Tweedie, C., and Wullschleger, S.: Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets, Hydrogeol. J., 21, 149–169, https://doi.org/10.1007/s10040-012-0939-y, 2013.
Kane, D., Gieck, R., and Bowling, L. C.: Impacts of surficial permafrost landforms on surface hydrology, in: Proceedings of the Eighth International Conference on Permafrost, edited by: Philips, M., Springman, S. M., and Arenson, L. U., Taylor and Francis Group, London, UK, 2003.
Karra, S., Painter, S. L., and Lichtner, P. C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0), The Cryosphere, 8, 1935–1950, https://doi.org/10.5194/tc-8-1935-2014, 2014.
Kneafsey, T. and Ulrich, C.: CT Scans of Cores Metadata, Barrow, Alaska 2015 [Data], Next Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1170517, 2016.
Kumar, J., Collier, N., Bisht, G., Mills, R. T., Thornton, P. E., Iversen, C. M., and Romanovsky, V.: Modeling the spatio-temporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape: Modeling Archive [Data], Next Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1184018, 2016.
Langer, M., Westermann, S., Muster, S., Piel, K., and Boike, J.: The surface energy balance of a polygonal tundra site in northern Siberia – Part 1: Spring to fall, The Cryosphere, 5, 151–171, https://doi.org/10.5194/tc-5-151-2011, 2011.
Liljedahl, A. K., Hinzman, L. D., Harazono, Y., Zona, D., Tweedie, C. E., Hollister, R. D., Engstrom, R., and Oechel, W. C.: Nonlinear controls on evapotranspiration in arctic coastal wetlands, Biogeosciences, 8, 3375–3389, https://doi.org/10.5194/bg-8-3375-2011, 2011.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N., Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D., Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, Nat. Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
Madsen, H.: Automatic calibration of a conceptual rainfall–runoff model using multiple objectives, J. Hydrol., 235, 276–288, https://doi.org/10.1016/S0022-1694(00)00279-1, 2000.
Muster, S., Langer, M., Heim, B., Westermann, S., and Boike, J.: Subpixel heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia, Tellus B, 64, 17301, https://doi.org/10.3402/tellusb.v64i0.17301, 2012.
Nature: Journals unite for reproducibility, Nature, 515, 7, https://doi.org/10.1038/515007a, 2014.
Painter, S.: Three-phase numerical model of water migration in partially frozen geological media: model formulatoin, validation, and applications, Comput. Geosci., 15, 69–85, 2011.
Painter, S. and Karra, S.: Constitutive Model for Unfrozen Water Content in Subfreezing Unsaturated Soils, Vadose Zone J., 13, https://doi.org/10.2136/vzj2013.04.0071, 2014.
Peterson, J.: Ground Penetrating Radar, Barrow, Alaska [Data], Next Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1171723, 2016.
Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G.: Soil carbon pools and world life zones, Nature, 298, 156–159, 1982.
Romanovsky, V. E. and Cable, W.: Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D [Data], Next Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1126515, 2012.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis, Permafrost Periglac. Process., 21, 106–116, https://doi.org/10.1002/ppp.689, 2010.
Shafii, M. and De Smedt, F.: Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm, Hydrol. Earth Syst. Sci., 13, 2137–2149, https://doi.org/10.5194/hess-13-2137-2009, 2009.
Singh, A. and Minsker, B. S.: Uncertainty-based multiobjective optimization of groundwater remediation design, Water Resour. Res., 44, w02404, https://doi.org/10.1029/2005WR004436, 2008.
Skurikhin, A. N., Gangodagamage, C., Rowland, J. C., and Wilson, C. J.: Arctic tundra ice-wedge landscape characterization by active contours without edges and structural analysis using high-resolution satellite imagery, Remote Sens. Lett., 4, 1077–1086, https://doi.org/10.1080/2150704X.2013.840404, 2013.
Tang, G., Yuan, F., Bisht, G., Hammond, G. E., Lichtner, P. C., Kumar, J., Mills, R. T., Xu, X., Andre, B., Hoffman, F. M., Painter, S. L., and Thornton, P. E.: Using reactive transport codes to provide mechanistic biogeochemistry representations in global land surface models: CLM-PFLOTRAN 1.0, Geosci. Model Dev. Discuss., 8, 10627–10676, https://doi.org/10.5194/gmdd-8-10627-2015, 2015.
Tesfa, T. K., Li, H.-Y., Leung, L. R., Huang, M., Ke, Y., Sun, Y., and Liu, Y.: A subbasin-based framework to represent land surface processes in an Earth system model, Geosci. Model Dev., 7, 947–963, https://doi.org/10.5194/gmd-7-947-2014, 2014.
Tweedie, C. E.: Barrow Area Remote Sensing – Digital Elevation Model [Data], Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO, USA, https://doi.org/10.5065/D6KS6PQ3, 2010.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E., Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W., Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold season emissions dominate the Arctic tundra methane budget, P. Natl. Acad. Sci. USA, 113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.
Short summary
Microtopography of the low-gradient polygonal tundra plays a critical role in these ecosystem; however, patterns and drivers are poorly understood. A modeling-based approach was developed in this study to characterize and represent the permafrost soils in the model and simulate the thermal dynamics using a mechanistic high-resolution model. Results shows the ability of the model to simulate the patterns and variability of thermal regimes and improve our understanding of polygonal tundra.
Microtopography of the low-gradient polygonal tundra plays a critical role in these ecosystem;...