Articles | Volume 10, issue 3
https://doi.org/10.5194/tc-10-1161-2016
https://doi.org/10.5194/tc-10-1161-2016
Research article
 | 
31 May 2016
Research article |  | 31 May 2016

Characterizing Arctic sea ice topography using high-resolution IceBridge data

Alek A. Petty, Michel C. Tsamados, Nathan T. Kurtz, Sinead L. Farrell, Thomas Newman, Jeremy P. Harbeck, Daniel L. Feltham, and Jackie A. Richter-Menge

Related authors

New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA’s Airborne Topographic Mapper: observations and models
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-126,https://doi.org/10.5194/tc-2023-126, 2023
Revised manuscript under review for TC
Short summary
Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023,https://doi.org/10.5194/tc-17-127-2023, 2023
Short summary
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021,https://doi.org/10.5194/tc-15-821-2021, 2021
Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021,https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary

Related subject area

Sea Ice
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Why is Summertime Arctic Sea Ice Drift Speed Projected to Decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-99,https://doi.org/10.5194/tc-2023-99, 2023
Revised manuscript accepted for TC
Short summary
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023,https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary

Cited articles

Aaboe, S., Breivik, L-A., Sørensen, A., Eastwood, S., and Lavergne, T.: Global Sea Ice Edge and Type Product User's Manual, Product OSI-403-b, EUMETSAT Ocean and Sea Ice Satellite Application Facility available at: http://saf.met.no/docs/osisaf_cdop2_ss2_pum_ice-edge-type_v1p1.pdf, 2015.
Arya, S. P. S.: Contribution of form drag on pressure ridges to the air stress on Arctic ice, J. Geophys. Res., 78, 7092–7099, https://doi.org/10.1029/JC078i030p07092, 1973.
Beckers, J. F., Renner, A. H. H., Spreen, G., Gerland, S., and Haas, C.: Sea-ice surface roughness estimates from airborne laser scanner and laser altimeter observations in Fram Strait and north of Svalbard, Ann. Glaciol., 56, 235–244, https://doi.org/10.3189/2015AoG69A717, 2015.
Brooks, C., Beckley, M., Blair, J. B., and Hofton., M.: IceBridge LVIS POS/AV L1B Corrected Position and Altitude Data, Version 1 [2009–2014], Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center, https://doi.org/10.5067/2NWNMDSG5EPJ, (updated 2015), 2012.
Download
Short summary
This study presents an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper (ATM) laser altimeter, flown as part of NASA's Operation IceBridge mission. We describe and implement a newly developed sea ice surface feature-picking algorithm and derive novel information regarding the height, volume and geometry of surface features over the western Arctic sea ice cover.