Articles | Volume 9, issue 3
https://doi.org/10.5194/tc-9-881-2015
https://doi.org/10.5194/tc-9-881-2015
Research article
 | 
06 May 2015
Research article |  | 06 May 2015

Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal

Related authors

Investigating the multi-millennial evolution and stability of the Greenland ice sheet using remapped surface mass balance forcing
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2192,https://doi.org/10.5194/egusphere-2025-2192, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025,https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Climate and ocean circulation changes toward a modern snowball Earth
Takashi Obase, Takanori Kodama, Takao Kawasaki, Sam Sherriff-Tadano, Daisuke Takasuka, Ayako Abe-Ouchi, and Masakazu Fujii
EGUsphere, https://doi.org/10.5194/egusphere-2025-1484,https://doi.org/10.5194/egusphere-2025-1484, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025,https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary
Competing processes determine the long-term impact of basal friction parameterizations for Antarctic mass loss
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-441,https://doi.org/10.5194/egusphere-2025-441, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary

Related subject area

Antarctic
A facet-based numerical model to retrieve ice sheet topography from Sentinel-3 altimetry
Jérémie Aublanc, François Boy, Franck Borde, and Pierre Féménias
The Cryosphere, 19, 1937–1954, https://doi.org/10.5194/tc-19-1937-2025,https://doi.org/10.5194/tc-19-1937-2025, 2025
Short summary
How do extreme ENSO events affect Antarctic surface mass balance?
Jessica M. A. Macha, Andrew N. Mackintosh, Felicity S. McCormack, Benjamin J. Henley, Helen V. McGregor, Christiaan T. van Dalum, and Ariaan Purich
The Cryosphere, 19, 1915–1935, https://doi.org/10.5194/tc-19-1915-2025,https://doi.org/10.5194/tc-19-1915-2025, 2025
Short summary
Current reversal leads to regime change in the Amery Ice Shelf cavity in the 21st century
Jing Jin, Antony J. Payne, and Christopher Y. S. Bull
The Cryosphere, 19, 1873–1896, https://doi.org/10.5194/tc-19-1873-2025,https://doi.org/10.5194/tc-19-1873-2025, 2025
Short summary
Speed-up, slowdown, and redirection of ice flow on neighbouring ice streams in the Pope, Smith, and Kohler region of West Antarctica
Heather L. Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
The Cryosphere, 19, 1725–1738, https://doi.org/10.5194/tc-19-1725-2025,https://doi.org/10.5194/tc-19-1725-2025, 2025
Short summary
Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200
Nicolas C. Jourdain, Charles Amory, Christoph Kittel, and Gaël Durand
The Cryosphere, 19, 1641–1674, https://doi.org/10.5194/tc-19-1641-2025,https://doi.org/10.5194/tc-19-1641-2025, 2025
Short summary

Cited articles

Badger, M. P. S., Schmidt, D. N., Mackensen, A., and Pancost, R. D.: High-resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3–2.8 Ma), Philos. T. Roy. Soc. A, 371, 20130094, https://doi.org/10.1098/rsta.2013.0094, 2013.
Bartoli, G., Hönisch, B., and Zeebe, R. E.: Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations, Paleoceanography, 26, PA4213, https://doi.org/10.1029/2010PA002055, 2011.
Beckmann, A. and Goosse, H.: A parameterization of ice shelf-ocean interaction for climate models, Ocean Model., 5, 157–170, 2003.
Boyer, T. P., Antonov, J. I., Baranova, O. K., Garcia, H. E., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T. D., Seidov, D., Smolyar, I. V., and Zweng, M. M.: World Ocean Database 2009, in: NOAA Atlas NESDIS 66, edited by Levitus, S., US Gov. Printing Office, Washington, D.C., p. 216, 2009.
Bracegirdle, T. J. and Marshall, G. J.: The Reliability of Antarctic Tropospheric Pressure and Temperature in the Latest Global Reanalyses, J. Climate, 25, 7138–7146, 2012.
Download
Short summary
We present results from simulations of the Antarctic ice sheet by means of an intercomparison project with six ice-sheet models. Our results demonstrate the difficulty of all models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line. Improved grounding-line physics could be essential for a correct representation of the migration of the grounding line of the Antarctic ice sheet during the Pliocene.
Share