

Supplement of

Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

B. de Boer et al.

Correspondence to: B. de Boer (b.deboer@uu.nl)

Fig. S1: Yearly mean difference in climatology relative to the HadCM3 pre-industrial climate. The top panels are for the HadCM3 Pliocene simulation (a-d), bottom panels for ERA-40 (e,f,h) and WOD-09 (g). From left to right, surface–air temperature in °C, Precipitation in m yr⁻¹ water equivalent, sea surface temperatures and temperatures at the bottom of the PD ice shelves in °C and surface topography in the climate model in m. The black line in all panels represents the Bedmap1 outline of the grounding line.

Fig. S2: Top panels show the yearly mean climatology of HadAM3 with Pliocene boundary conditions except a modern-day Antarctica. a) Surface-air temperature (°C), b) precipitation (meters per year). Bottom panels show the difference with the HadCM3 pre-industrial climatology. c) Temperature and d) precipitation. The black line in all panels represents the Bedmap1 outline of the grounding line.

Fig. S3: Differences of ice thickness at the end of the simulation for the Control_{HadCM3}

Fig. S3: Differences of ice thickness at the end of the simulation for the Control_{HadCM3} experiment with the initial present day Bedmap1 ice thickness. a) AISM, b) ANICE, c) PISM. d) PSU-ISM, e) RIMBAY and f) SICOPOLIS.

Fig. S4: Ice surface topography and ice thickness of the ice shelves for the Control_{Obs} experiment with ERA-40/WOD-2009 climate forcing. a) Initial ice sheet from Bedmap1, b) AISM, c) ANICE, d) PISM, e) PSU-ISM, f) RIMBAY, g) SICOPOLIS.

Fig. S5: Final grounded ice volume (10^{6} km^{3}) for the Pliocene simulations with Bedmap1. Pliocene_{Ice-PD} in blue, Pliocene_{Ice-PRISM3} in orange and Control_{HadCM3} in red. The horizontal dashed lines indicate the PD and Pliocene ice volume and area for the initial ice-sheet topographies. a) Grounded ice volume of East Antarctica for the SIA-SSA ISMs, b) grounded ice volume of West Antarctica for the SIA-SSA ISMs c) grounded ice volume of East Antarctica are divided by the meridians at 30 °W and 160 °E.

Fig. S6: Final grounded ice volume and area for the simulations with Bedmap2. Control_{HadCM3} in red, Pliocene_{Ice-PD} in blue, Pliocene_{Ice-PRISM3} in orange. The horizontal dashed lines indicate the PD and Pliocene ice volume and area for the initial ice-sheet topographies. a) Grounded volume for the SIA-SSA ISMs (10^6 km^3), b) grounded volume for the 3 SIA ISMs, c) grounded ice area for the SIA-SSA ISMs (10^6 km^2) and d) for the SIA ISMs.

Fig. S7: Ice surface topography and ice thickness of the ice shelves for the Pliocene_{Ice-PD} simulation with Bedmap2. a) The initial Bedmap2 ice-sheet topography. b) AISM, c) ANICE, d) PISM, e) PSU-ISM, f) RIMBAY, g) SICOPOLIS. SIA-only models; h) ICIES, i) IMAU-ICE, j) BASISM.