Articles | Volume 9, issue 6
The Cryosphere, 9, 2295–2310, 2015
https://doi.org/10.5194/tc-9-2295-2015
The Cryosphere, 9, 2295–2310, 2015
https://doi.org/10.5194/tc-9-2295-2015

Research article 07 Dec 2015

Research article | 07 Dec 2015

Debris-covered glacier energy balance model for Imja–Lhotse Shar Glacier in the Everest region of Nepal

D. R. Rounce et al.

Related authors

Modeling the glacial lake outburst flood process chain in the Nepal Himalaya: reassessing Imja Tsho's hazard
Jonathan M. Lala, David R. Rounce, and Daene C. McKinney
Hydrol. Earth Syst. Sci., 22, 3721–3737, https://doi.org/10.5194/hess-22-3721-2018,https://doi.org/10.5194/hess-22-3721-2018, 2018
Short summary
Multiannual observations and modelling of seasonal thermal profiles through supraglacial debris in the Central Himalaya
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239,https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Brief communication: Observations of a glacier outburst flood from Lhotse Glacier, Everest area, Nepal
David R. Rounce, Alton C. Byers, Elizabeth A. Byers, and Daene C. McKinney
The Cryosphere, 11, 443–449, https://doi.org/10.5194/tc-11-443-2017,https://doi.org/10.5194/tc-11-443-2017, 2017
Short summary
A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya
David R. Rounce, Daene C. McKinney, Jonathan M. Lala, Alton C. Byers, and C. Scott Watson
Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016,https://doi.org/10.5194/hess-20-3455-2016, 2016
Short summary
Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal
M. A. Somos-Valenzuela, D. C. McKinney, A. C. Byers, D. R. Rounce, C. Portocarrero, and D. Lamsal
Hydrol. Earth Syst. Sci., 19, 1401–1412, https://doi.org/10.5194/hess-19-1401-2015,https://doi.org/10.5194/hess-19-1401-2015, 2015
Short summary

Related subject area

Alpine Glaciers
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021,https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021,https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
A new automatic approach for extracting glacier centerlines based on Euclidean allocation
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021,https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019
Livia Jakob, Noel Gourmelen, Martin Ewart, and Stephen Plummer
The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-1845-2021,https://doi.org/10.5194/tc-15-1845-2021, 2021
Short summary

Cited articles

Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards, Earth-Sci. Rev., 114, 156–174, 2012.
Bolch, T., Pieczonka, T., and Benn, D. I.: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery, The Cryosphere, 5, 349–358, https://doi.org/10.5194/tc-5-349-2011, 2011.
Brock, B .W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297, 2006.
Brock, B. W., Mihalcea, C., Kirkbride, M. P., Diolaiuti, G., Cutler, M. E. J,. and Smiraglia, C.: Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps, J. Geophys. Res., 115, D09106, https://doi.org/10.1029/2009JD013224, 2010.
Collier, E., Nicholson, L. I., Brock, B. W., Maussion, F., Essery, R., and Bush, A. B. G.: Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach, The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014, 2014.
Download
Short summary
A debris-covered glacier energy balance was used to model debris temperatures and sub-debris ablation rates on Imja-Lhotse Shar Glacier during the 2014 melt season. Field measurements were used to assess model performance. A novel method was also developed using Structure from Motion to estimate the surface roughness. Lastly, the effects of temporal resolution, i.e., 6h and daily time steps, and various methods for estimating the latent heat flux were also investigated.