Bindschadler, R., Bamber, J., and Anandakrishnan, S.: Onset of streaming flow in the siple coast region, West Antarctica, in: The West Antarctic Ice Sheet: Behavior and Environment, American Geophysical Union, John Wiley & Sons, Ltd, Hoboken, New Jersey, USA, 123–136, 2001.
Booth, A. M., Hurley, R., Lamb, M. P., and Andrade, J. E.: Force chains as the link between particle and bulk friction angles in granular material, Geophys. Res. Lett., 41, https://doi.org/10.1002/2014GL061981, 2014.
Bougamont, M., Price, S., Christoffersen, P., and Payne, A. J.: Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology, J. Geophys. Res.-Earth, 116, F04018, https://doi.org/10.1029/2011JF002025, 2011.
Carman, P. C.: Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15, 150–166, 1937.
Clark, C. D., Tulaczyk, S. M., Stokes, C. R., and Canals, M.: A groove-ploughing theory for the production of mega-scale glacial lineations, and implications for ice-stream mechanics, J. Glaciol., 49, 240–256, 2003.
Clarke, G. K. C.: Subglacial processes, Annu. Rev. Earth Pl. Sc., 33, 247–276, 2005.
Damsgaard, A., Egholm, D. L., Piotrowski, J. A., Tulaczyk, S., Larsen, N. K., and Tylmann, K.: Discrete element modeling of subglacial sediment deformation, J. Geophys. Res.-Earth, 118, 2230–2242, 2013.
Dewhurst, D. N., Brown, K. M., Clennell, M. B., and Westbrook, G. K.: A comparison of the fabric and permeability anisotropy of consolidated and sheared silty clay, Eng. Geol., 42, 253–267, 1996.
Di Felice, R.: The voidage function for fluid-particle interaction systems, Int. J. Multiphas. Flow, 20, 153–159, 1994.
Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf buttressing to ice-sheet flow, Geophys. Res. Lett., 32, L04503, https://doi.org/10.1029/2004GL022024, 2005.
Ergun, S.: Fluid flow through packed columns, Chem. Eng. Prog., 43, 89–94, 1952.
Feng, Y. Q. and Yu, A. B.: Assessment of model formulations in the discrete particle simulation of gas-solid flow, Ind. Eng. Chem., 43, 8378–8390, 2004.
Fischer, U. H., Porter, P. R., Schuler, T., Evans, A. J., and Gudmundsson, G. H.: Hydraulic and mechanical properties of glacial sediments beneath Unteraargletscher, Switzerland: implications for glacier basal motion, Hydrol. Process., 15, 3525–3540, 2001.
Fowler, A. C.: An instability mechanism for drumlin formation, Geol. Soc., London, Spec. Pub., 176, 307–319, 2000.
GDR-MiDi: On dense granular flows, Eur. Phys. J. E, 14, 341–365, 2004.
Gerya, T.: Introduction to Numerical Geodynamic Modelling, Cambridge University Press, Cambridge, 2010.
Gidaspow, D.: Multiphase Flow and Fluidization, Academic Press, San Diego, 1994.
Gidaspow, D., Bezburuah, R., and Ding, J.: Hydrodynamics of circulating fluidized beds: kinetic theory approach, Tech. Rep., Illinois Inst. of Tech., Dept. Chemical Engineering, Chicago, IL (United States), 1992.
Goren, L., Aharonov, E., Sparks, D., and Toussaint, R.: The mechanical coupling of fluid-filled granular material under shear, Pure Appl. Geophys., 168, 2289–2323, 2011.
Gu, Y., Chialvo, S., and Sundaresan, S.: Rheology of cohesive granular materials across multiple dense-flow regimes, Phys. Rev. E, 90, 032206, https://doi.org/10.1103/PhysRevE.90.032206, 2014.
Hazen, A.: Discussion of dams on sand formation, T. Am. Soc. Civ. Eng., 73, 199–221, 1911.
Hindmarsh, R. C. A.: The stability of a viscous till sheet coupled with ice flow, considered at wavelengths less than the ice thickness, J. Glaciol., 44, 285–292, 1998.
Hoomans, B. P. B., Kuipers, J. A. M., Briels, W. J., and Van Swaaij, W. P. M.: Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach, Chem. Eng. Sci., 51, 99–118, 1996.
Hunter, J. D.: Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 9, 90–95, 2007.
Iverson, N. R.: Coupling between a glacier and a soft bed: II. Model results, J. Glaciol., 45, 41–53, 1999.
Iverson, N. R.: Shear resistance and continuity of subglacial till: hydrology rules, J. Glaciol., 56, 1104–1114, 2010.
Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E., and Brien, D. L.: Acute sensitivity of landslide rates to initial soil porosity, Science, 290, 513–516, 2000.
Jajcevic, D., Siegmann, E., Radeke, C., and Khinast, J. G.: Large-scale CFD}–{DEM simulations of fluidized granular systems, Chem. Eng. Sci., 98, 298–310, 2013.
Joughin, I., Fahnestock, M., MacAyeal, D., Bamber, J. L., and Gogineni, P.: Observation and analysis of ice flow in the largest Greenland ice stream, J. Geophys. Res.-Atmos., 106, 34021–34034, 2001.
Kamb, B.: Glacier surge mechanism based on linked cavity configuration of the basal water conduit system, J. Geophys. Res., 92, 9083–9100, 1987.
Kamb, B.: Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion, J. Geophys. Res., 96, 16585–16595, 1991.
Kavanaugh, J. L. and Clarke, G. K. C.: Discrimination of the flow law for subglacial sediment using in situ measurements and an interpretation model, J. Geophys. Res.-Earth, 111, F01002, https://doi.org/10.1029/2005JF000346, 2006.
Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM, Prog. Comput. Fluid Dy., 12, 140–152, 2012.
Kozeny, J.: Ueber kapillare Leitung des Wassers im Boden, Sitzber. Aka. Wiss. Wien, 136, 271–306, 1927.
Kyrke-Smith, T. M., Katz, R. F., and Fowler, A. C.: Subglacial hydrology and the formation of ice streams, P. R. Soc. A, 470, 20130494, https://doi.org/10.1098/rspa.2013.0494, 2014.
Luding, S.: Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory, Eur. J. Env. Civ. Eng., 12, 785–826, 2008.
MacAyeal, D. R., Bindschadler, R. A., and Scambos, T. A.: Basal friction of I}ce Stream E, {West Antarctica, J. Glaciol., 41, 247–262, 1995.
Mair, K. and Hazzard, J. F.: Nature of stress accommodation in sheared granular material: insights from 3D numerical modeling, Earth Planet. Sc. Lett., 259, 469–485, 2007.
Mair, K., Frye, K. M., and Marone, C.: Influence of grain characteristics on the friction of granular shear zones, J. Geophys. Res.-Sol. Ea., 107, ECV-4, https://doi.org/10.1029/2001JB000516, 2002.
Mangeney, A., Tsimring, L. S., Volfson, D., Aranson, I. S., and Bouchut, F.: Avalanche mobility induced by the presence of an erodible bed and associated entrainment, Geophys. Res. Lett., 34, L22401, https://doi.org/10.1029/2007GL031348, 2007.
Mead, W. J.: The geologic role of dilatancy, J. Geol., 33, 685–698, 1925.
Morgan, J. K.: Numerical simulations of granular shear zones using the distinct element method 2. Effects of particle size distribution and interparticle friction on mechanical behavior, J. Geophys. Res., 104, 2721–2732, 1999.
Mutabaruka, P., Delenne, J.-Y., Soga, K., and Radjai, F.: Initiation of immersed granular avalanches, Phys. Rev. E, 89, 052203, https://doi.org/10.1103/PhysRevE.89.052203, 2014.
NVIDIA: CUDA C Programming Guide, NVIDIA Corporation, Santa Clara, CA, USA, 5.0 Edn., 2013.
Odar, F.: Verification of proposed equation for calculation of forces on a sphere accelerating in a viscous fluid. J. Fluid. Mech., 25, 591–592, 1966.
Pailha, M., Nicolas, M., and Pouliquen, O.: Initiation of underwater granular avalanches: influence of the initial volume fraction, Phys. Fluids, 20, 111701, https://doi.org/10.1063/1.3013896, 2008.
Patankar, S. V.: Numerical Heat Transfer and Fluid Flow, CRC Press, Boca Raton, Florida, USA, 1980.
Piotrowski, J. A.: Genesis of the Woodstock drumlin field, southern Ontario, Canada, Boreas, 16, 249–265, 1987.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes 3rd edition: the Art of Scientific Computing, Cambridge University Press, Cambridge, UK, 2007.
Price, S. F., Bindschadler, C. L., Hulbe, C. L., and Blankenship, D. D.: Force balance along an inland tributary and onset to I}ce Stream D, {West Antarctica, J. Glaciol., 48, 20–30, 2002.
Rathbun, A. P., Marone, C., Alley, R. B., and Anandakrishnan, S.: Laboratory study of the frictional rheology of sheared till, J. Geophys. Res., 113, F02020, https://doi.org/10.1029/2007JF000815, 2008.
Reynolds, O.: On the dilatancy of media composed of rigid particles in contact, Philos. Mag., 20, 469–481, 1885.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and Thomas, R.: Accelerated ice discharge from the A}ntarctic Peninsula following the collapse of Larsen {B ice shelf, Geophys. Res. Lett., 31, L18401, https://doi.org/10.1029/2004GL020697, 2004.
Rondon, L., Pouliquen, O., and Aussillous, P.: Granular collapse in a fluid: role of the initial volume fraction, Phys. Fluids, 23, 073301, https://doi.org/10.1063/1.3594200, 2011.
Saffman, P. G.: Lift on a small sphere in slow shear flow, J. Fluid. Mech., 22, 385–400, 1965.
Saffman, P. G.: Corrigendum to "Lift on a small sphere in slow shear flow", J. Fluid. Mech., 31, 624, 1968.
Schellart, W. P.: Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling, Tectonophysics, 324, 1–16, 2000.
Stokes, C. R., Clark, C. D., Lian, O. B., and Tulaczyk, S.: Ice stream sticky spots: a review of their identification and influence beneath contemporary and palaeo-ice streams, Earth-Sci. Rev., 81, 217–249, 2007.
Thomason, J. F. and Iverson, N. R.: A laboratory study of particle ploughing and pore-pressure feedback: a velocity-weakening mechanism for soft glacier beds, J. Glaciol., 54, 169–181, 2008.
Topin, V., Dubois, F., Monerie, Y., Perales, F., and Wachs, A.: Micro-rheology of dense particulate flows: application to immersed avalanches, J. Non-Newton. Fluid, 166, 63–72, 2011.
Tulaczyk, S.: Ice sliding over weak, fine-grained tills: dependence of ice-till interactions on till granulometry, Geol. Soc. Am. Mem., 337, 159–177, 1999.
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of ice stream B, West Antarctica I. Till mechanics, J. Geophys. Res., 105, 463–481, 2000a.
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of ice stream B, West Antarctica II. Undrained plastic-bed model, J. Geophys. Res., 105, 483–494, 2000b.
Turrin, J. B., Forster, R. R., Sauber, J. M., Hall, D. K., and Bruhn, R. L.: Effects of bedrock lithology and subglacial till on the motion of Ruth Glacier, Alaska, deduced from five pulses from 1973 to 2012, J. Glaciol., 60, 771–781, https://doi.org/10.3189/2014JoG13J182, 2014.
Winberry, J. P., Anandakrishnan, S., Alley, R. B., Bindschadler, R. A., and King, M. A.: Basal mechanics of ice streams: insights from the stick-slip motion of Whillans Ice Stream, West Antarctica, J. Geophys. Res., 114, F01016, https://doi.org/10.1029/2008JF001035, 2009.
Xu, B. H. and Yu, A. B.: Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics, Chem. Eng. Sci., 52, 2785–2809, 1997.
Xu, B. H., Feng, Y. Q., Yu, A. B., Chew, S. J., and Zulli, P.: A numerical and experimental study of the gas-solid flow in a fluid bed reactor, Powder Handling and Processing, 13, 71–76, 2001.
Zhou, Z. Y., Kuang, S. B., Chu, K. W., and Yu, A. B.: Discrete particle simulation of particle–fluid flow: model formulations and their applicability, J. Fluid Mech., 661, 482–510, 2010.
Zhu, H. P., Zhou, Z. Y., Yang, R. Y., and Yu, A. B.: Discrete particle simulation of particulate systems: theoretical developments, Chem. Eng. Sci., 62, 3378–3396, 2007.