Aharon, P.: Oxygen, carbon and U-series isotopes of aragonites from
Vestfold Hills, Antarctica: Clues to geochemical processes in subglacial
environments, Geochim. Cosmochim. Ac., 52, 2321–2331,
https://doi.org/10.1016/0016-7037(88)90134-2, 1988.
Alley, R. B.: The Younger Dryas cold interval as viewed from central
Greenland, Quaternary Sci. Rev., 19, 213–226,
https://doi.org/10.1016/s0277-3791(99)00062-1, 2000.
Antoniades, D., Francus, P., Pienitz, R., St-Onge, G., and Vincent, W. F.:
Holocene dynamics of the Arctic's largest ice shelf, P.
Natl. Acad. Sci. USA, 108,
18899–18904, https://doi.org/10.1073/pnas.1106378108, 2011.
Bahr, D. B. and Radić, V.: Significant contribution to total mass from very small glaciers, The Cryosphere, 6, 763–770, https://doi.org/10.5194/tc-6-763-2012, 2012.
Bajo, P., Hellstrom, J., Frisia, S., Drysdale, R., Black, J., Woodhead, J.,
Borsato, A., Zanchetta, G., Wallace, M. W., Regattieri, E., and Haese, R.:
“Cryptic” diagenesis and its implications for speleothem geochronologies,
Quaternary Sci. Rev., 148, 17–28, https://doi.org/10.1016/j.quascirev.2016.06.020,
2016.
Baroni, C. and Orombelli, G.: The Alpine “Iceman” and Holocene Climatic
Change, Quaternary Res., 46, 78–83, https://doi.org/10.1006/qres.1996.0046, 1996.
Basilyan, A. E., Anisimov, M. A., Nikolskiy, P. A., and Pitulko, V. V.:
Wooly mammoth mass accumulation next to the Paleolithic Yana RHS site,
Arctic Siberia: its geology, age, and relation to past human activity,
J. Archaeol. Sci., 38, 2461–2474,
https://doi.org/10.1016/j.jas.2011.05.017, 2011.
Bauer, F.: Kalkabtragungsmessungen in den österreichischen
Kalkhochalpen, Erdkunde, 18, 95–102, https://doi.org/10.3112/erdkunde.1964.02.04, 1964.
Bavec, M. and Verbič, T.: Glacial History of Slovenia, in: Quaternary
Glaciations – Extent and Chronology – A Closer Look,
edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., Elsevier, Amsterdam, The Netherlands, 385–392
https://doi.org/10.1016/b978-0-444-53447-7.00029-5, 2011.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation (2nd Ed.),
Routledge, London, UK, 2010.
Bons, P. D., Elburg, M. A., and Gomez-Rivas, E.: A review of the formation
of tectonic veins and their microstructures, J. Struct. Geol.,
43, 33–62, https://doi.org/10.1016/j.jsg.2012.07.005, 2012.
Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B., and
Putnam, A. E.: Putting the Younger Dryas cold event into context, Quaternary
Sci. Rev., 29, 1078–1081, https://doi.org/10.1016/j.quascirev.2010.02.019, 2010.
Carey, A. E., Smith, D. F., Welch, S. A., Zorn, M., Tičar, J., Lipar,
M., Komac, B., and Lyons, W. B.: The Geochemistry of Ice in the Southeastern Alps, Slovenia, Acta Geogr. Slov., 60, 2, https://doi.org/10.3986/AGS.7420, 2020.
Clark, I. D. and Lauriol, B.: Kinetic enrichment of stable isotopes in
cryogenic calcites, Chem. Geol., 102, 217–228,
https://doi.org/10.1016/0009-2541(92)90157-z, 1992.
Clayton, R. N. and Jones, B. F.: Isotope studies of dolomite formation under
sedimentary conditions, Geochim. Cosmochim. Ac., 32, 415–432,
https://doi.org/10.1016/0016-7037(68)90076-8, 1968.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M. L. N., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 114 pp, 2011.
Colucci, R. R.: Geomorphic influence on small glacier response to
post-Little Ice Age climate warming: Julian Alps, Europe, Earth Surf.
Proc. Land., 41, 1227–1240, https://doi.org/10.1002/esp.3908, 2016.
Colucci, R. R. and Guglielmin, M.: Precipitation-temperature changes and
evolution of a small glacier in the southeastern European Alps during the
last 90 years, Int. J. Climatol., 35, 2783–2797,
https://doi.org/10.1002/joc.4172, 2015.
Colucci, R. R. and Žebre, M.: Late Holocene evolution of glaciers in the
southeastern Alps, J. Maps, 12, 289–299,
https://doi.org/10.1080/17445647.2016.1203216, 2016.
Courty, M. A., Marlin, C., Dever, L., Tremblay, P., and Vachier, P.: The
properties, genesis and environmental significance of calcitic pendents from
the High Arctic (Spitsbergen), Geoderma, 61, 71–102,
https://doi.org/10.1016/0016-7061(94)90012-4, 1994.
DeBeer, C. M. and Sharp, M. J.: Topographic influences on recent changes of
very small glaciers in the Monashee Mountains, British Columbia, Canada,
J. Glaciol., 55, 691–700, https://doi.org/10.3189/002214309789470851, 2017.
De Choudens-Sánchez, V. and González, L. A.: Calcite and Aragonite
Precipitation Under Controlled Instantaneous Supersaturation: Elucidating
the Role of CaCO3 Saturation State and Mg/Ca Ratio on Calcium Carbonate
Polymorphism, J. Sediment. Res., 79, 363–376,
https://doi.org/10.2110/jsr.2009.043, 2009.
Del Gobbo, C., Colucci, R. R., Forte, E., Triglav Čekada, M., and Zorn,
M.: The Triglav Glacier (South-Eastern Alps, Slovenia): Volume Estimation,
Internal Characterization and 2000–2013 Temporal Evolution by Means of
Ground Penetrating Radar Measurements, Pure Appl. Geophys., 173,
2753–2766, https://doi.org/10.1007/s00024-016-1348-2, 2016.
Dias, L., Rosado, T., Coelho, A., Barrulas, P., Lopes, L., Moita, P.,
Candeias, A., Mirao, J., and Caldeira, A. T.: Natural limestone
discolouration triggered by microbial activity – a contribution, AIMS
Microbiol., 4, 594–607, https://doi.org/10.3934/microbiol.2018.4.594, 2018.
Drysdale, R. N., Hellstrom, J. C., Zanchetta, G., Fallick, A. E., Sanchez
Goni, M. F., Couchoud, I., McDonald, J., Maas, R., Lohmann, G., and Isola,
I.: Evidence for obliquity forcing of glacial Termination II, Science, 325,
1527–1531, https://doi.org/10.1126/science.1170371, 2009.
Ducman, V., Škapin, A. S., Radeka, M., and Ranogajec, J.: Frost
resistance of clay roofing tiles: Case study, Ceram. Int., 37,
85–91, https://doi.org/10.1016/j.ceramint.2010.08.012, 2011.
Fabel, D. and Harbor, J.: The use of in-situ produced cosmogenic
radionuclides in glaciology and glacial geomorphology, Ann. Glaciol.,
28, 103–110, https://doi.org/10.3189/172756499781821968, 1999.
Fairchild, I. J. and Spiro, B.: Carbonate minerals in glacial sediments:
geochemical clues to palaeoenvironment, Geol. Soc. Spec.
Publ., 53, 201–216, https://doi.org/10.1144/gsl.Sp.1990.053.01.11, 1990.
Faure, G.: Principles of isotopic geology, John Wiley and Sons, New York, USA, 1977.
Ferk, M., Gabrovec, M., Komac, B., Zorn, M., and Stepišnik, U.:
Pleistocene glaciation in Mediterranean Slovenia, Geol. Soc.
Spec. Publ., 433, 179–191, https://doi.org/10.1144/sp433.2, 2017.
Fernández-Díaz, L., Putnis, A., Prieto, M., and Putnis, C. V.: The
Role of Magnesium in the Crystallization of Calcite and Aragonite in a
Porous Medium, J. Sediment. Res., 66, 482–491,
https://doi.org/10.1306/d4268388-2b26-11d7-8648000102c1865d, 1996.
Ford, D. C., Fuller, P. G., and Drake, J. J.: Calcite precipitates at the
soles of temperate glaciers, Nature, 226, 441–442, https://doi.org/10.1038/226441a0,
1970.
Frisia, S. and Borsato, A.: Karst in: Carbonates in Continental Settings:
Facies, Environments and Processes. Developments in Sedimentology, edited by: Alonso
Zarza, A. M. and Tanner, L. H., Elsevier, Amsterdam, The Netherlands, 269–318,
https://doi.org/10.1016/S0070-4571(09)06106-8, 2010.
Frisia, S., Borsato, A., Fairchild, I. J., McDermott, F., and Selmo, E. M.:
Aragonite-Calcite Relationships in Speleothems (Grotte De Clamouse, France):
Environment, Fabrics, and Carbonate Geochemistry, J. Sediment.
Res., 72, 687–699, https://doi.org/10.1306/020702720687, 2002.
Frisia, S., Weyrich, L. S., Hellstrom, J., Borsato, A., Golledge, N. R.,
Anesio, A. M., Bajo, P., Drysdale, R. N., Augustinus, P. C., Rivard, C., and
Cooper, A.: The influence of Antarctic subglacial volcanism on the global
iron cycle during the Last Glacial Maximum, Nat. Commun., 8, 15425,
https://doi.org/10.1038/ncomms15425, 2017.
Furlani, S., Cucchi, F., Forti, F., and Rossi, A.: Comparison between
coastal and inland Karst limestone lowering rates in the northeastern
Adriatic Region (Italy and Croatia), Geomorphology, 104, 73–81,
https://doi.org/10.1016/j.geomorph.2008.05.015, 2009.
Gabbi, J., Huss, M., Bauder, A., Cao, F., and Schwikowski, M.: The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier, The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, 2015.
Gabrovec, M., Hrvatin, M., Komac, B., Ortar, J., Pavšek, M., Topole, M.,
Triglav Čekada, M., and Zorn, M.: Triglavski ledenik [Triglav Glacier],
Založba ZRC, Ljubljana, Slovenia, 2014.
Gabrovšek, F.: On concepts and methods for the estimation of
dissolutional denudation rates in karst areas, Geomorphology, 106, 9–14,
https://doi.org/10.1016/j.geomorph.2008.09.008, 2009.
Gądek, B. and Kotyrba, A.: Struktura wewnętrzna Lodowczyka
Mięguszowieckiego (Tatry) w świetle wyników badań
georadarowych (Internal structure of Mięguszowiecki Glacieret (Tatra
Mountains, southern Poland) in the light of results of georadar
investigations), Przegląd Geologiczny, 51, 1044–1047, 2003.
Gams, I.: Kras v Sloveniji – v prostoru in času [Karst in Slovenia – in
Space and Time], Založba ZRC, Ljubljana, Slovenia, 2004.
Gilbert, A., Flowers, G. E., Miller, G. H., Refsnider, K. A., Young, N. E.,
and Radić, V.: The projected demise of Barnes Ice Cap: Evidence of an
unusually warm 21st century Arctic, Geophys. Res. Lett., 44,
2810–2816, https://doi.org/10.1002/2016gl072394, 2017.
Grove, J. M.: Little Ice Ages: Anciend and Modern, 2nd edn., Routledge,
London, UK, 2004.
Grunewald, K. and Scheithauer, J.: Europe's southernmost glaciers: response
and adaptation to climate change, J. Glaciol., 56, 129–142,
https://doi.org/10.3189/002214310791190947, 2010.
Hallet, B.: Deposits formed by subglacial precipitation of CaCO3, Geol.
Soc. Am. Bull., 87, 1003,
https://doi.org/10.1130/0016-7606(1976)87<1003:DFBSPO>2.0.CO;2,
1976.
Hanshaw, B. B. and Hallet, B.: Oxygen isotope composition of subglacially
precipitated calcite: possible paleoclimatic implications, Science, 200,
1267–1270, https://doi.org/10.1126/science.200.4347.1267, 1978.
Hormes, A., Müller, B. U., and Schlüchter, C.: The Alps with little
ice: evidence for eight Holocene phases of reduced glacier extent in the
Central Swiss Alps, The Holocene, 11, 255–265,
https://doi.org/10.1191/095968301675275728, 2001.
Hrvatin, M., Komac, B., and Zorn, M.: Geomorfološke značilnosti
okolice Triglava (Geomorphological characteristics around Mt. Triglav),
Elaborate, Anton Melik Geographical Institute ZRC SAZU, Ljubljana, Slovenia, 2005.
Hrvatin, M. and Zorn, M.: Climate and hydrological changes in Slovenia's
mountain regions between 1961 and 2018, Economic Ecohistory, in
press, 2020.
IPCC: Global Warming of 1.5∘ C, An IPCC Special Report on the
impacts of global warming of 1.5∘ C above pre-industrial levels
and related global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte,
V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., United Nations, Intergovernmental Panel on Climate Change, Geneva, 2018.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in
the European Alps, Quaternary Sci. Rev., 28, 2137–2149,
https://doi.org/10.1016/j.quascirev.2009.03.009, 2009.
Jones, B.: Review of calcium carbonate polymorph precipitation in spring
systems, Sediment. Geol., 353, 64–75, https://doi.org/10.1016/j.sedgeo.2017.03.006,
2017.
Jouzel, J. and Souchez, R. A.: Melting-Refreezing at the Glacier Sole and
the Isotopic Composition of the Ice, J. Glaciol., 28, 35–42,
https://doi.org/10.3189/s0022143000011771, 1982.
Jurkovšek, B.: General Geological Map SFRJ 1:100,000, Villach section,
National Geological Survey, Belgrade, Serbia, 1987.
Kim, S.-T., O'Neil, J. R., Hillaire-Marcel, C., and Mucci, A.: Oxygen
isotope fractionation between synthetic aragonite and water: Influence of
temperature and Mg2+ concentration, Geochim. Cosmochim. Ac., 71,
4704–4715, https://doi.org/10.1016/j.gca.2007.04.019, 2007.
Kirkbride, M. P. and Winkler, S.: Correlation of Late Quaternary moraines:
impact of climate variability, glacier response, and chronological
resolution, Quaternary Sci. Rev., 46, 1–29,
https://doi.org/10.1016/j.quascirev.2012.04.002, 2012.
Koerner, R. M. and Fisher, D. A.: Ice-core evidence for widespread Arctic
glacier retreat in the Last Interglacial and the early Holocene, Ann. Glaciol., 35, 19–24, https://doi.org/10.3189/172756402781817338, 2002.
Komac, B., Pavšek, M., and Topole, M.: Climate and Weather of Slovenia,
in: The Geography of Slovenia, edited by: Perko, D., Ciglič, R., and Zorn, M., Springer, Ljubljana, Slovenia, https://doi.org/10.1007/978-3-030-14066-3_5,
2020.
Krklec, K., Domínguez-Villar, D., Carrasco, R. M., and Pedraza, J.:
Current denudation rates in dolostone karst from central Spain: Implications
for the formation of unroofed caves, Geomorphology, 264, 1–11,
https://doi.org/10.1016/j.geomorph.2016.04.007, 2016.
Kuhlemann, J., Rohling, E. J., Krumrei, I., Kubik, P., Ivy-Ochs, S., and
Kucera, M.: Regional synthesis of Mediterranean atmospheric circulation
during the Last Glacial Maximum, Science, 321, 1338–1340,
https://doi.org/10.1126/science.1157638, 2008.
Kumar, R.: Glacieret, in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V. P., Singh, P., and Haritashya, U. K., Springer, Dordrecht, The Netherlands, https://doi.org/10.1007/978-90-481-2642-2_203, 2011.
Kunaver, J.: Intenzivnost zakrasevanja in njegovi učinki v Zahodnih
Julijskih Alpah – Kaninsko pogorje (The intensity of karst denudation in
the Western Julian Alps and the measruing of it), Geografski Vestnik, 50,
33–50, 1978.
Lacelle, D.: Environmental setting, (micro)morphologies and stable C-O
isotope composition of cold climate carbonate precipitates – a review and
evaluation of their potential as paleoclimatic proxies, Quaternary Sci.
Rev., 26, 1670–1689, https://doi.org/10.1016/j.quascirev.2007.03.011, 2007.
Lachniet, M. S., Bernal, J. P., Asmerom, Y., and Polyak, V.: Uranium loss
and aragonite-calcite age discordance in a calcitized aragonite stalagmite,
Quat. Geochronol., 14, 26–37, https://doi.org/10.1016/j.quageo.2012.08.003, 2012.
Leemann, A. and Niessen, F.: Holocene glacial activity and climatic
variations in the Swiss Alps: reconstructing a continuous record from
proglacial lake sediments, The Holocene, 4, 259–268,
https://doi.org/10.1177/095968369400400305, 1994.
Lemmens, M., Lorrain, R., and Haren, J.: Isotopic composition of ice and
subglacially precipitated calcite in an Alpine area, Zeitschrift für
Gletscherkunde und Glazialgeologie, 18, 151–159, 1982.
Lyons, W. B., Foley, K. K., Carey, A. E., Diaz, M. A., Bowen, G. J., and
Cerling, T.: The Isotopic Geochemistry of CaCO3 Encrustations in Taylor
Valley, Antarctica: Implications for Their Origin, Acta Geogr.
Slov., 60, 2, https://doi.org/10.3986/AGS.7233, 2020.
Marrero, S. M., Phillips, F. M., Caffee, M. W., and Gosse, J. C.:
CRONUS-Earth cosmogenic 36Cl calibration, Quat. Geochronol., 31,
199–219, https://doi.org/10.1016/j.quageo.2015.10.002, 2016.
Martín-García, R., Alonso-Zarza, A. M., Frisia, S.,
Rodríguez-Berriguete, Á., Drysdale, R., and Hellstrom, J.: Effect
of aragonite to calcite transformation on the geochemistry and dating
accuracy of speleothems, An example from Castañar Cave, Spain,
Sediment. Geol., 383, 41–54, https://doi.org/10.1016/j.sedgeo.2019.01.014, 2019.
Matsuoka, N. and Murton, J.: Frost weathering: recent advances and future
directions, Permafrost Periglac., 19, 195–210,
https://doi.org/10.1002/ppp.620, 2008.
Meze, D.: The Triglav and Skuta glaciers, Acta Geogr., 3, 10–114, 1955.
Miller, G. H., Lehman, S. J., Refsnider, K. A., Southon, J. R., and Zhong,
Y.: Unprecedented recent summer warmth in Arctic Canada, Geophys.
Res. Lett., 40, 5745–5751, https://doi.org/10.1002/2013gl057188, 2013.
Ming, J., Xiao, C., Du, Z., and Yang, X.: An overview of black carbon
deposition in High Asia glaciers and its impacts on radiation balance,
Adv. Water Res., 55, 80–87, https://doi.org/10.1016/j.advwatres.2012.05.015,
2013.
Mol, D., Coppens, Y., Tikhonov, A. N., Agenbroad, L. D., MacPhee, R. D. E.,
Flemming, C., Greenwood, A., Buigues, B., de Marliave, C., van Geel, B., van
Reenen, G. B. A., Pals, J. P., Fisher, D. C., and Fox, D.: The Jarkov
Mammoth: 20,000-Year-Old carcass of a Siberian woolly mammoth Mammuthus
primigenius, in: Proceedings of the 1st International Congress on the World of Elephants, Rome, Italy, 16–20 October 2001, 305–309, 2001.
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A.: The
Alpine LGM in the boreal ice-sheets game, Nat. Sci. Rep., 7,
2078, https://doi.org/10.1038/s41598-017-02148-7, 2017.
Nussbaumer, S. U., Steinhilber, F., Trachsel, M., Breitenmoser, P., Beer,
J., Blass, A., Grosjean, M., Hafner, A., Holzhauser, H., Wanner, H., and
Zumbühl, H. J.: Alpine climate during the Holocene: a comparison between
records of glaciers, lake sediments and solar activity, J.
Quaternary Sci., 26, 703–713, https://doi.org/10.1002/jqs.1495, 2011.
Ortega, R., Maire, R., Devès, G., and Quinif, Y.: High-resolution
mapping of uranium and other trace elements in recrystallized
aragonite-calcite speleothems from caves in the Pyrenees (France):
Implication for U-series dating, Earth Planet. Sci. Lett., 237,
911–923, https://doi.org/10.1016/j.epsl.2005.06.045, 2005.
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A.,
and Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial
black carbon, PNAS, 110, 15216–15221, https://doi.org/10.1073/pnas.1302570110, 2013.
Peterson, J. A. and Moresby, J. F.: Subglacial travertine and associated
deposits in the Carstensz area, Irian Jaya, Republic of Indonesia,
Zeitschrift fur Gletscherkunde und Glazialgeologie, 15, 23–29, 1979.
Plan, L.: Factors controlling carbonate dissolution rates quantified in a
field test in the Austrian alps, Geomorphology, 68, 201–212,
https://doi.org/10.1016/j.geomorph.2004.11.014, 2005.
Pleničar, M., Ogorelec, B., and Novak, M.: Geologija Slovenije (The
Geology of Slovenia), Geološki zavod Slovenije, Ljubljana, Slovenia, 2009.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Ramovš, A.: O Zlatenski plošči sensu Kossmat, 1913, Slatenskem
pokrovu sensu Buser, 1986, Slatenskem narivu sensu Jurkovšek, 1987 in
Triglavskem pokrovu sensu Ramovš, 1985 (About the Zlatna (Kossmat 1913),
Slatna (Buser 1986; Jurkovšek 1987) or the Triglav Thrust (Ramovš
1985)), Geologija, 43, 109–113, https://doi.org/10.5474/geologija.2000.010, 2000.
Refsnider, K. A., Miller, G. H., Hillaire-Marcel, C., Fogel, M. L., Ghaleb,
B., and Bowden, R.: Subglacial carbonates constrain basal conditions and
oxygen isotopic composition of the Laurentide Ice Sheet over Arctic Canada,
Geology, 40, 135–138, https://doi.org/10.1130/g32335.1, 2012.
Renssen, H. and Isarin, R. F. B.: Surface temperature in NW Europe during
the Younger Dryas: AGCM simulation compared with temperature
reconstructions, Clim. Dynam., 14, 33–44, https://doi.org/10.1007/s003820050206,
1997.
Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., and
Fichefet, T.: The spatial and temporal complexity of the Holocene thermal
maximum, Nat. Geosci., 2, 411–414, https://doi.org/10.1038/ngeo513, 2009.
Risheng, L., Jun, C., Gengnian, L., and Zhijiu, C.: Characteristics of the
subglacially-formed debris-rich chemical deposits and related subglacial
processes of Qiangyong Glacier, Tibet, J. Geogr. Sci., 13,
455–462, https://doi.org/10.1007/bf02837884, 2003.
Rossi, C. and Lozano, R. P.: Hydrochemical controls on aragonite versus
calcite precipitation in cave dripwaters, Geochim. Cosmochim. Ac.,
192, 70–96, https://doi.org/10.1016/j.gca.2016.07.021, 2016.
Scholz, D. and Hoffmann, D.: 230Th/U-dating of fossil corals and speleothems, E&G Quaternary Sci. J., 57, 52–76, https://doi.org/10.3285/eg.57.1-2.3, 2008.
Serrano, E., González-trueba, J. J., Sanjosé, J. J., and Del
río, L. M.: Ice patch origin, evolution and dynamics in a temperate
high mountain environment: the Jopicou Negro, Picos de Europa (NW Spain),
Geogr. Ann. A, 93, 57–70,
https://doi.org/10.1111/j.1468-0459.2011.00006.x, 2011.
Sharp, M., Tison, J.-L., and Fierens, G.: Geochemistry of Subglacial
Calcites: Implications for the Hydrology of the Basal Water Film, Arctic Alpine Res., 22, 141–152, https://doi.org/10.1080/00040851.1990.12002776, 1990.
Sharpe, D. R. and Shaw, J.: Erosion of bedrock by subglacial meltwater,
Cantley, Quebec, Geol. Soc. Am. Bull., 101, 1011–1020,
https://doi.org/10.1130/0016-7606(1989)101<1011:Eobbsm>2.3.Co;2,
1989.
Šifrer, M.: New findings about the glaciation of Triglav – the Triglav
glacier during the last 8 years (1954–1962), Acta Geogr., 8, 157–210,
1963.
Šifrer, M.: The main findings concerning the Triglav Glacier in the
years (1963–1973) Acta Geogr., 15, 213–240, 1976.
Šifrer, M.: The Triglav Glacier in the years 1974–1985, Acta
Geogr., 26, 97–137, 1987.
Slovenian Environment Agency: Kredarica Climate Diagram, available at: http://meteo.arso.gov.si/met/sl/archive/, last access: 10 February 2020a.
Slovenian Environment Agency: Daily Climate Data per Weather Station, available at: https://www.arso.gov.si/en/, last access: 10 February 2020b.
Slovenian Environment Agency: Archive of Observed and Measured Meteorological Data in Slovenia, available at: http://meteo.arso.gov.si/met/sl/archive/, last access: 10 February 2020c.
Slovenian Environment Agency: Climate Change Impacts on Triglav Glacier, available at: http://kazalci.arso.gov.si/en/content/triglav-glacier, last access: 2 February 2020d.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and
Young, N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev.,
111, 9–34, https://doi.org/10.1016/j.quascirev.2014.11.018, 2015.
Souchez, R. A. and Lemmens, M.: Subglacial carbonate deposition: An isotopic
study of a present-day case, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 51, 357–364, https://doi.org/10.1016/0031-0182(85)90093-8, 1985.
Steinemann, O., Ivy-Ochs, S., Grazioli, S., Luetscher, M., Fischer, U. H.,
Vockenhuber, C., and Synal, H. A.: Quantifying glacial erosion on a
limestone bed and the relevance for landscape development in the Alps, Earth
Surf. Proc. Land., 45, 1401–1417, https://doi.org/10.1002/esp.4812, 2020.
Sugden, D. E. and John, B. S.: Glaciers and landscape: a geomorphological
approach, Arnold, London, UK, 1976.
Sweeting, M. M.: Some factors in the absolute denudation of limestone
terrains, Erdkunde, 18, 92–95, 1964.
Thomazo, C., Buoncristiani, J.-F., Vennin, E., Pellenard, P., Cocquerez, T.,
Mugnier, J. L., and Gérard, E.: Geochemical Processes Leading to the
Precipitation of Subglacial Carbonate Crusts at Bossons Glacier, Mont Blanc
Massif (French Alps), Front. Earth Sci., 5, 70,
https://doi.org/10.3389/feart.2017.00070, 2017.
Tičar, J., Lipar, M., Zorn, M., and Kozamernik, E.: Triglavsko podzemlje
(The underground world of Triglav Plateau), in: Triglav 240, edited by: Zorn, M., Mikša, P., Lačen Benedičič, I., Ogrin, M., and Kunstelj, A. M., Založba ZRC, Ljubljana, Slovenia, 131–145, https://doi.org/10.3986/9789610500841, 2018.
Tóth, G. and Veress, M.: Examination of karren surfaces in the foreland
of the glacier below Triglav, in: Glaciokarsts, edited by: Veress, M., Telbisz, T., Tóth, G., Lóczy, D., Ruban, D. A., and Gutak, J. M., Springer, Cham, Switzerland, 335–371, https://doi.org/10.1007/978-3-319-97292-3_8,
2019.
Triglav Čekada, M. and Gabrovec, M.: Zgodovina geodetskih meritev na
Triglavskem ledeniku (The History of Geodetic Surveys on Triglav Glacier),
Geod. Vestn., 52, 508–519, 2008.
Triglav-Čekada, M. and Gabrovec, M.: Documentation of Triglav glacier,
Slovenia, using non-metric panoramic images, Ann. Glaciol., 54,
80–86, https://doi.org/10.3189/2013AoG62A095, 2013.
Triglav-Čekada, M. and Zorn, M.: Thickness and geodetic mass balance
changes of the Triglav Glacier (SE Alps) in the period 1952–2016, Acta
Geogr. Slov., 60, 2, https://doi.org/10.3986/AGS.7673, 2020.
Triglav-Čekada, M., Radovan, D., Gabrovec, M., and Kosmatin-Fras, M.:
Acquisition of the 3D boundary of the Triglav glacier from archived
non-metric panoramic images, Photogramm. Rec., 26, 111–129,
https://doi.org/10.1111/j.1477-9730.2011.00622.x, 2011.
Triglav-Čekada, M., Barbo, P., Pavšek, M., and Zorn, M.: Changes in the Skuta Glacier (southeastern Alps) assessed using non-metric images, Acta Geogr.
Slov., 60, 2, https://doi.org/10.3986/AGS.7674, 2020.
Verbič, T. and Gabrovec, M.: Georadarske meritve na Triglavskem ledeniku
(The ground-penetrating-radar measurements of the Triglav Glacier),
Geogr. Vestn., 74, 25–42, 2002.
Wassenburg, J. A., Immenhauser, A., Richter, D. K., Jochum, K. P., Fietzke,
J., Deininger, M., Goos, M., Scholz, D., and Sabaoui, A.: Climate and cave
control on Pleistocene/Holocene calcite-to-aragonite transitions in
speleothems from Morocco: Elemental and isotopic evidence, Geochim.
Cosmochim. Ac., 92, 23–47, https://doi.org/10.1016/j.gca.2012.06.002, 2012.
ZRC SAZU: Triglav Glacier Camera, available at: http://ktl.zrc-sazu.si/, last access: 1 March 2020.