Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-17-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-17-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Subglacial carbonate deposits as a potential proxy for a glacier's former presence
Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Andrea Martín-Pérez
Ivan Rakovec Institute of Palaeontology, Research Centre of the
Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Jure Tičar
Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Miha Pavšek
Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Matej Gabrovec
Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Mauro Hrvatin
Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Blaž Komac
Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Matija Zorn
Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Nadja Zupan Hajna
Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 6230 Postojna, Slovenia
Jian-Xin Zhao
School of Earth and Environmental Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
Russell N. Drysdale
School of Geography, The University of Melbourne, Melbourne, VIC 3053, Australia
Mateja Ferk
Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 1000 Ljubljana, Slovenia
Related authors
No articles found.
Calla N. Gould-Whaley, Russell N. Drysdale, Pauline C. Treble, Jan-Hendrik May, Stacey C. Priestley, John C. Hellstrom, and Clare Buswell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1959, https://doi.org/10.5194/egusphere-2024-1959, 2024
Short summary
Short summary
Climate change is causing enhanced aridity across many regions of the globe, leading to increased reliance on groundwater resources. We need to understand how groundwater recharge behaves in arid regions over long timescales, unfortunately, arid landscapes tend to preserve very little evidence of their climatic past. We present evidence to suggest that carbonate formations that grow in groundwater can be used as archives of past groundwater recharge in Australia's arid zone.
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Rasmussen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2911, https://doi.org/10.5194/egusphere-2023-2911, 2024
Short summary
Short summary
The Paleochrono1 probablistic dating model allows to derive a common and optimized chronology for several paleoclimatic sites from various archives (ice cores, speleothems, marine cores, lake cores, etc.). It combines prior sedimentation scenarios with chronological information such as dated horizons, dated intervals, stratigraphic links and (for ice cores) Delta-depth observations. Paleochrono1 is available under the MIT open-source license.
Timothy Pollard, Jon Woodhead, John Hellstrom, John Engel, Roger Powell, and Russell Drysdale
Geochronology, 5, 181–196, https://doi.org/10.5194/gchron-5-181-2023, https://doi.org/10.5194/gchron-5-181-2023, 2023
Short summary
Short summary
When using the uranium–lead (U–Pb) radiometric dating method on very young materials (e.g. Quaternary age zircon and carbonate minerals), it is important to accurately account for the production and decay of intermediate
daughterisotopes in the uranium-series decay chain. DQPB is open-source software that allows users to easily perform such calculations for a variety of sample types and produce publication-ready graphical outputs of the resulting age information.
Hege Kilhavn, Isabelle Couchoud, Russell N. Drysdale, Carlos Rossi, John Hellstrom, Fabien Arnaud, and Henri Wong
Clim. Past, 18, 2321–2344, https://doi.org/10.5194/cp-18-2321-2022, https://doi.org/10.5194/cp-18-2321-2022, 2022
Short summary
Short summary
The analysis of stable carbon and oxygen isotopic ratios, trace element ratios, and growth rate from a Spanish speleothem provides quantitative information on past hydrological conditions during the early Holocene in south-western Europe. Our data show that the cave site experienced increased effective recharge during the 8.2 ka event. Additionally, the oxygen isotopes indicate a change in the isotopic composition of the moisture source, associated with the meltwater flux to the North Atlantic.
Zuorui Liu, Amy Prendergast, Russell Drysdale, and Jan-Hendrik May
E&G Quaternary Sci. J., 71, 227–241, https://doi.org/10.5194/egqsj-71-227-2022, https://doi.org/10.5194/egqsj-71-227-2022, 2022
Short summary
Short summary
Past studies used two sampling strategies, the "bulk" and "sequential" drilling methods, for stable isotopic analysis of mammoth tooth enamel and paleoenvironmental reconstruction. This study applied both methods to the same enamel ridges of multiple mammoth teeth and compared their respective δ18O values. Offsets were detected between the bulk and average sequential δ18O values. The potential reasons for the offsets and their impacts on cross-method data comparison were discussed.
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022, https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary
Short summary
Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a case study from the North Pamir, Central Asia, that calcite U–Pb age data, supported by geochemistry and petrological microscopy, have potential to date sufficiently old oceanic basalts, if the time span between basalt extrusion and latest calcite precipitation (~ 25 Myr) is considered.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Bronwyn C. Dixon, Jonathan J. Tyler, Andrew M. Lorrey, Ian D. Goodwin, Joëlle Gergis, and Russell N. Drysdale
Clim. Past, 13, 1403–1433, https://doi.org/10.5194/cp-13-1403-2017, https://doi.org/10.5194/cp-13-1403-2017, 2017
Short summary
Short summary
Existing sedimentary palaeoclimate records in Australasia were assessed for suitability for examining the last 2 millennia. A small number of high-quality records were identified, and new Bayesian age models were constructed for each record. Findings suggest that Australasian record chronologies and confidence in proxy–climate relationships are the main factors limiting appropriate data for examining Common Era climate variability. Recommendations for improving data accessibility are provided.
Pauline C. Treble, Andy Baker, Linda K. Ayliffe, Timothy J. Cohen, John C. Hellstrom, Michael K. Gagan, Silvia Frisia, Russell N. Drysdale, Alan D. Griffiths, and Andrea Borsato
Clim. Past, 13, 667–687, https://doi.org/10.5194/cp-13-667-2017, https://doi.org/10.5194/cp-13-667-2017, 2017
Short summary
Short summary
Little is known about the climate of southern Australia during the Last Glacial Maximum and deglaciation owing to sparse records for this region. We present the first high-resolution data, derived from speleothems that grew 23–5 ka. It appears that recharge to the Flinders Ranges was higher than today, particularly during 18.9–15.8 ka, argued to be due to the enhanced availability of tropical moisture. An abrupt shift to aridity is recorded at 15.8 ka, associated with restored westerly airflow.
Frank Techel, Frédéric Jarry, Georg Kronthaler, Susanna Mitterer, Patrick Nairz, Miha Pavšek, Mauro Valt, and Gian Darms
Geogr. Helv., 71, 147–159, https://doi.org/10.5194/gh-71-147-2016, https://doi.org/10.5194/gh-71-147-2016, 2016
Short summary
Short summary
During the last 45 years, about 100 people lost their lives in avalanches in the European Alps each year. Avalanche fatalities in settlements and on transportation corridors have considerably decreased since the 1970s. In contrast, the number of avalanche fatalities during recreational activities away from avalanche-secured terrain doubled between the 1960s and 1980s and has remained relatively stable since, despite a continuing strong increase in winter backcountry recreational activities.
Mihaela Triglav-Čekada, Blaž Barborič, Mateja Ferk, and Matija Zorn
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-86, https://doi.org/10.5194/tc-2016-86, 2016
Preprint withdrawn
Short summary
Short summary
In 2015 the nationwide lidar of Slovenia became available. These data enable the identification of potential rock glaciers and protalus ramparts. All the mountainous areas at elevations above 1200 m a.s.l. were evaluated. Twenty potential rock glaciers and eight potential protalus ramparts were found. They are the most abundant in the Karavanks, followed by the Julian Alps and one on the Snežnik. The majority of the potential rock glaciers are probably relicts, due to the heavy vegetation cover.
B. Komac, M. Zorn, and R. Ciglič
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-2255-2013, https://doi.org/10.5194/nhessd-1-2255-2013, 2013
Revised manuscript has not been submitted
P. Pipan and M. Zorn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-2231-2013, https://doi.org/10.5194/nhessd-1-2231-2013, 2013
Revised manuscript has not been submitted
S. Frisia, A. Borsato, R. N. Drysdale, B. Paul, A. Greig, and M. Cotte
Clim. Past, 8, 2039–2051, https://doi.org/10.5194/cp-8-2039-2012, https://doi.org/10.5194/cp-8-2039-2012, 2012
Related subject area
Discipline: Other | Subject: Subglacial Processes
Misidentified subglacial lake beneath the Devon Ice Cap, Canadian Arctic: a new interpretation from seismic and electromagnetic data
Siobhan F. Killingbeck, Anja Rutishauser, Martyn J. Unsworth, Ashley Dubnick, Alison S. Criscitiello, James Killingbeck, Christine F. Dow, Tim Hill, Adam D. Booth, Brittany Main, and Eric Brossier
The Cryosphere, 18, 3699–3722, https://doi.org/10.5194/tc-18-3699-2024, https://doi.org/10.5194/tc-18-3699-2024, 2024
Short summary
Short summary
A subglacial lake was proposed to exist beneath Devon Ice Cap in the Canadian Arctic based on the analysis of airborne data. Our study presents a new interpretation of the subglacial material beneath the Devon Ice Cap from surface-based geophysical data. We show that there is no evidence of subglacial water, and the subglacial lake has likely been misidentified. Re-evaluation of the airborne data shows that overestimation of a critical processing parameter has likely occurred in prior studies.
Cited articles
Aharon, P.: Oxygen, carbon and U-series isotopes of aragonites from
Vestfold Hills, Antarctica: Clues to geochemical processes in subglacial
environments, Geochim. Cosmochim. Ac., 52, 2321–2331,
https://doi.org/10.1016/0016-7037(88)90134-2, 1988.
Alley, R. B.: The Younger Dryas cold interval as viewed from central
Greenland, Quaternary Sci. Rev., 19, 213–226,
https://doi.org/10.1016/s0277-3791(99)00062-1, 2000.
Antoniades, D., Francus, P., Pienitz, R., St-Onge, G., and Vincent, W. F.:
Holocene dynamics of the Arctic's largest ice shelf, P.
Natl. Acad. Sci. USA, 108,
18899–18904, https://doi.org/10.1073/pnas.1106378108, 2011.
Bahr, D. B. and Radić, V.: Significant contribution to total mass from very small glaciers, The Cryosphere, 6, 763–770, https://doi.org/10.5194/tc-6-763-2012, 2012.
Bajo, P., Hellstrom, J., Frisia, S., Drysdale, R., Black, J., Woodhead, J.,
Borsato, A., Zanchetta, G., Wallace, M. W., Regattieri, E., and Haese, R.:
“Cryptic” diagenesis and its implications for speleothem geochronologies,
Quaternary Sci. Rev., 148, 17–28, https://doi.org/10.1016/j.quascirev.2016.06.020,
2016.
Baroni, C. and Orombelli, G.: The Alpine “Iceman” and Holocene Climatic
Change, Quaternary Res., 46, 78–83, https://doi.org/10.1006/qres.1996.0046, 1996.
Basilyan, A. E., Anisimov, M. A., Nikolskiy, P. A., and Pitulko, V. V.:
Wooly mammoth mass accumulation next to the Paleolithic Yana RHS site,
Arctic Siberia: its geology, age, and relation to past human activity,
J. Archaeol. Sci., 38, 2461–2474,
https://doi.org/10.1016/j.jas.2011.05.017, 2011.
Bauer, F.: Kalkabtragungsmessungen in den österreichischen
Kalkhochalpen, Erdkunde, 18, 95–102, https://doi.org/10.3112/erdkunde.1964.02.04, 1964.
Bavec, M. and Verbič, T.: Glacial History of Slovenia, in: Quaternary
Glaciations – Extent and Chronology – A Closer Look,
edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., Elsevier, Amsterdam, The Netherlands, 385–392
https://doi.org/10.1016/b978-0-444-53447-7.00029-5, 2011.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation (2nd Ed.),
Routledge, London, UK, 2010.
Bons, P. D., Elburg, M. A., and Gomez-Rivas, E.: A review of the formation
of tectonic veins and their microstructures, J. Struct. Geol.,
43, 33–62, https://doi.org/10.1016/j.jsg.2012.07.005, 2012.
Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B., and
Putnam, A. E.: Putting the Younger Dryas cold event into context, Quaternary
Sci. Rev., 29, 1078–1081, https://doi.org/10.1016/j.quascirev.2010.02.019, 2010.
Carey, A. E., Smith, D. F., Welch, S. A., Zorn, M., Tičar, J., Lipar,
M., Komac, B., and Lyons, W. B.: The Geochemistry of Ice in the Southeastern Alps, Slovenia, Acta Geogr. Slov., 60, 2, https://doi.org/10.3986/AGS.7420, 2020.
Clark, I. D. and Lauriol, B.: Kinetic enrichment of stable isotopes in
cryogenic calcites, Chem. Geol., 102, 217–228,
https://doi.org/10.1016/0009-2541(92)90157-z, 1992.
Clayton, R. N. and Jones, B. F.: Isotope studies of dolomite formation under
sedimentary conditions, Geochim. Cosmochim. Ac., 32, 415–432,
https://doi.org/10.1016/0016-7037(68)90076-8, 1968.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M. L. N., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 114 pp, 2011.
Colucci, R. R.: Geomorphic influence on small glacier response to
post-Little Ice Age climate warming: Julian Alps, Europe, Earth Surf.
Proc. Land., 41, 1227–1240, https://doi.org/10.1002/esp.3908, 2016.
Colucci, R. R. and Guglielmin, M.: Precipitation-temperature changes and
evolution of a small glacier in the southeastern European Alps during the
last 90 years, Int. J. Climatol., 35, 2783–2797,
https://doi.org/10.1002/joc.4172, 2015.
Colucci, R. R. and Žebre, M.: Late Holocene evolution of glaciers in the
southeastern Alps, J. Maps, 12, 289–299,
https://doi.org/10.1080/17445647.2016.1203216, 2016.
Courty, M. A., Marlin, C., Dever, L., Tremblay, P., and Vachier, P.: The
properties, genesis and environmental significance of calcitic pendents from
the High Arctic (Spitsbergen), Geoderma, 61, 71–102,
https://doi.org/10.1016/0016-7061(94)90012-4, 1994.
DeBeer, C. M. and Sharp, M. J.: Topographic influences on recent changes of
very small glaciers in the Monashee Mountains, British Columbia, Canada,
J. Glaciol., 55, 691–700, https://doi.org/10.3189/002214309789470851, 2017.
De Choudens-Sánchez, V. and González, L. A.: Calcite and Aragonite
Precipitation Under Controlled Instantaneous Supersaturation: Elucidating
the Role of CaCO3 Saturation State and Mg/Ca Ratio on Calcium Carbonate
Polymorphism, J. Sediment. Res., 79, 363–376,
https://doi.org/10.2110/jsr.2009.043, 2009.
Del Gobbo, C., Colucci, R. R., Forte, E., Triglav Čekada, M., and Zorn,
M.: The Triglav Glacier (South-Eastern Alps, Slovenia): Volume Estimation,
Internal Characterization and 2000–2013 Temporal Evolution by Means of
Ground Penetrating Radar Measurements, Pure Appl. Geophys., 173,
2753–2766, https://doi.org/10.1007/s00024-016-1348-2, 2016.
Dias, L., Rosado, T., Coelho, A., Barrulas, P., Lopes, L., Moita, P.,
Candeias, A., Mirao, J., and Caldeira, A. T.: Natural limestone
discolouration triggered by microbial activity – a contribution, AIMS
Microbiol., 4, 594–607, https://doi.org/10.3934/microbiol.2018.4.594, 2018.
Drysdale, R. N., Hellstrom, J. C., Zanchetta, G., Fallick, A. E., Sanchez
Goni, M. F., Couchoud, I., McDonald, J., Maas, R., Lohmann, G., and Isola,
I.: Evidence for obliquity forcing of glacial Termination II, Science, 325,
1527–1531, https://doi.org/10.1126/science.1170371, 2009.
Ducman, V., Škapin, A. S., Radeka, M., and Ranogajec, J.: Frost
resistance of clay roofing tiles: Case study, Ceram. Int., 37,
85–91, https://doi.org/10.1016/j.ceramint.2010.08.012, 2011.
Fabel, D. and Harbor, J.: The use of in-situ produced cosmogenic
radionuclides in glaciology and glacial geomorphology, Ann. Glaciol.,
28, 103–110, https://doi.org/10.3189/172756499781821968, 1999.
Fairchild, I. J. and Spiro, B.: Carbonate minerals in glacial sediments:
geochemical clues to palaeoenvironment, Geol. Soc. Spec.
Publ., 53, 201–216, https://doi.org/10.1144/gsl.Sp.1990.053.01.11, 1990.
Faure, G.: Principles of isotopic geology, John Wiley and Sons, New York, USA, 1977.
Ferk, M., Gabrovec, M., Komac, B., Zorn, M., and Stepišnik, U.:
Pleistocene glaciation in Mediterranean Slovenia, Geol. Soc.
Spec. Publ., 433, 179–191, https://doi.org/10.1144/sp433.2, 2017.
Fernández-Díaz, L., Putnis, A., Prieto, M., and Putnis, C. V.: The
Role of Magnesium in the Crystallization of Calcite and Aragonite in a
Porous Medium, J. Sediment. Res., 66, 482–491,
https://doi.org/10.1306/d4268388-2b26-11d7-8648000102c1865d, 1996.
Ford, D. C., Fuller, P. G., and Drake, J. J.: Calcite precipitates at the
soles of temperate glaciers, Nature, 226, 441–442, https://doi.org/10.1038/226441a0,
1970.
Frisia, S. and Borsato, A.: Karst in: Carbonates in Continental Settings:
Facies, Environments and Processes. Developments in Sedimentology, edited by: Alonso
Zarza, A. M. and Tanner, L. H., Elsevier, Amsterdam, The Netherlands, 269–318,
https://doi.org/10.1016/S0070-4571(09)06106-8, 2010.
Frisia, S., Borsato, A., Fairchild, I. J., McDermott, F., and Selmo, E. M.:
Aragonite-Calcite Relationships in Speleothems (Grotte De Clamouse, France):
Environment, Fabrics, and Carbonate Geochemistry, J. Sediment.
Res., 72, 687–699, https://doi.org/10.1306/020702720687, 2002.
Frisia, S., Weyrich, L. S., Hellstrom, J., Borsato, A., Golledge, N. R.,
Anesio, A. M., Bajo, P., Drysdale, R. N., Augustinus, P. C., Rivard, C., and
Cooper, A.: The influence of Antarctic subglacial volcanism on the global
iron cycle during the Last Glacial Maximum, Nat. Commun., 8, 15425,
https://doi.org/10.1038/ncomms15425, 2017.
Furlani, S., Cucchi, F., Forti, F., and Rossi, A.: Comparison between
coastal and inland Karst limestone lowering rates in the northeastern
Adriatic Region (Italy and Croatia), Geomorphology, 104, 73–81,
https://doi.org/10.1016/j.geomorph.2008.05.015, 2009.
Gabbi, J., Huss, M., Bauder, A., Cao, F., and Schwikowski, M.: The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier, The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, 2015.
Gabrovec, M., Hrvatin, M., Komac, B., Ortar, J., Pavšek, M., Topole, M.,
Triglav Čekada, M., and Zorn, M.: Triglavski ledenik [Triglav Glacier],
Založba ZRC, Ljubljana, Slovenia, 2014.
Gabrovšek, F.: On concepts and methods for the estimation of
dissolutional denudation rates in karst areas, Geomorphology, 106, 9–14,
https://doi.org/10.1016/j.geomorph.2008.09.008, 2009.
Gądek, B. and Kotyrba, A.: Struktura wewnętrzna Lodowczyka
Mięguszowieckiego (Tatry) w świetle wyników badań
georadarowych (Internal structure of Mięguszowiecki Glacieret (Tatra
Mountains, southern Poland) in the light of results of georadar
investigations), Przegląd Geologiczny, 51, 1044–1047, 2003.
Gams, I.: Kras v Sloveniji – v prostoru in času [Karst in Slovenia – in
Space and Time], Založba ZRC, Ljubljana, Slovenia, 2004.
Gilbert, A., Flowers, G. E., Miller, G. H., Refsnider, K. A., Young, N. E.,
and Radić, V.: The projected demise of Barnes Ice Cap: Evidence of an
unusually warm 21st century Arctic, Geophys. Res. Lett., 44,
2810–2816, https://doi.org/10.1002/2016gl072394, 2017.
Grove, J. M.: Little Ice Ages: Anciend and Modern, 2nd edn., Routledge,
London, UK, 2004.
Grunewald, K. and Scheithauer, J.: Europe's southernmost glaciers: response
and adaptation to climate change, J. Glaciol., 56, 129–142,
https://doi.org/10.3189/002214310791190947, 2010.
Hallet, B.: Deposits formed by subglacial precipitation of CaCO3, Geol.
Soc. Am. Bull., 87, 1003,
https://doi.org/10.1130/0016-7606(1976)87<1003:DFBSPO>2.0.CO;2,
1976.
Hanshaw, B. B. and Hallet, B.: Oxygen isotope composition of subglacially
precipitated calcite: possible paleoclimatic implications, Science, 200,
1267–1270, https://doi.org/10.1126/science.200.4347.1267, 1978.
Hormes, A., Müller, B. U., and Schlüchter, C.: The Alps with little
ice: evidence for eight Holocene phases of reduced glacier extent in the
Central Swiss Alps, The Holocene, 11, 255–265,
https://doi.org/10.1191/095968301675275728, 2001.
Hrvatin, M., Komac, B., and Zorn, M.: Geomorfološke značilnosti
okolice Triglava (Geomorphological characteristics around Mt. Triglav),
Elaborate, Anton Melik Geographical Institute ZRC SAZU, Ljubljana, Slovenia, 2005.
Hrvatin, M. and Zorn, M.: Climate and hydrological changes in Slovenia's
mountain regions between 1961 and 2018, Economic Ecohistory, in
press, 2020.
IPCC: Global Warming of 1.5∘ C, An IPCC Special Report on the
impacts of global warming of 1.5∘ C above pre-industrial levels
and related global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte,
V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., United Nations, Intergovernmental Panel on Climate Change, Geneva, 2018.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in
the European Alps, Quaternary Sci. Rev., 28, 2137–2149,
https://doi.org/10.1016/j.quascirev.2009.03.009, 2009.
Jones, B.: Review of calcium carbonate polymorph precipitation in spring
systems, Sediment. Geol., 353, 64–75, https://doi.org/10.1016/j.sedgeo.2017.03.006,
2017.
Jouzel, J. and Souchez, R. A.: Melting-Refreezing at the Glacier Sole and
the Isotopic Composition of the Ice, J. Glaciol., 28, 35–42,
https://doi.org/10.3189/s0022143000011771, 1982.
Jurkovšek, B.: General Geological Map SFRJ 1:100,000, Villach section,
National Geological Survey, Belgrade, Serbia, 1987.
Kim, S.-T., O'Neil, J. R., Hillaire-Marcel, C., and Mucci, A.: Oxygen
isotope fractionation between synthetic aragonite and water: Influence of
temperature and Mg2+ concentration, Geochim. Cosmochim. Ac., 71,
4704–4715, https://doi.org/10.1016/j.gca.2007.04.019, 2007.
Kirkbride, M. P. and Winkler, S.: Correlation of Late Quaternary moraines:
impact of climate variability, glacier response, and chronological
resolution, Quaternary Sci. Rev., 46, 1–29,
https://doi.org/10.1016/j.quascirev.2012.04.002, 2012.
Koerner, R. M. and Fisher, D. A.: Ice-core evidence for widespread Arctic
glacier retreat in the Last Interglacial and the early Holocene, Ann. Glaciol., 35, 19–24, https://doi.org/10.3189/172756402781817338, 2002.
Komac, B., Pavšek, M., and Topole, M.: Climate and Weather of Slovenia,
in: The Geography of Slovenia, edited by: Perko, D., Ciglič, R., and Zorn, M., Springer, Ljubljana, Slovenia, https://doi.org/10.1007/978-3-030-14066-3_5,
2020.
Krklec, K., Domínguez-Villar, D., Carrasco, R. M., and Pedraza, J.:
Current denudation rates in dolostone karst from central Spain: Implications
for the formation of unroofed caves, Geomorphology, 264, 1–11,
https://doi.org/10.1016/j.geomorph.2016.04.007, 2016.
Kuhlemann, J., Rohling, E. J., Krumrei, I., Kubik, P., Ivy-Ochs, S., and
Kucera, M.: Regional synthesis of Mediterranean atmospheric circulation
during the Last Glacial Maximum, Science, 321, 1338–1340,
https://doi.org/10.1126/science.1157638, 2008.
Kumar, R.: Glacieret, in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V. P., Singh, P., and Haritashya, U. K., Springer, Dordrecht, The Netherlands, https://doi.org/10.1007/978-90-481-2642-2_203, 2011.
Kunaver, J.: Intenzivnost zakrasevanja in njegovi učinki v Zahodnih
Julijskih Alpah – Kaninsko pogorje (The intensity of karst denudation in
the Western Julian Alps and the measruing of it), Geografski Vestnik, 50,
33–50, 1978.
Lacelle, D.: Environmental setting, (micro)morphologies and stable C-O
isotope composition of cold climate carbonate precipitates – a review and
evaluation of their potential as paleoclimatic proxies, Quaternary Sci.
Rev., 26, 1670–1689, https://doi.org/10.1016/j.quascirev.2007.03.011, 2007.
Lachniet, M. S., Bernal, J. P., Asmerom, Y., and Polyak, V.: Uranium loss
and aragonite-calcite age discordance in a calcitized aragonite stalagmite,
Quat. Geochronol., 14, 26–37, https://doi.org/10.1016/j.quageo.2012.08.003, 2012.
Leemann, A. and Niessen, F.: Holocene glacial activity and climatic
variations in the Swiss Alps: reconstructing a continuous record from
proglacial lake sediments, The Holocene, 4, 259–268,
https://doi.org/10.1177/095968369400400305, 1994.
Lemmens, M., Lorrain, R., and Haren, J.: Isotopic composition of ice and
subglacially precipitated calcite in an Alpine area, Zeitschrift für
Gletscherkunde und Glazialgeologie, 18, 151–159, 1982.
Lyons, W. B., Foley, K. K., Carey, A. E., Diaz, M. A., Bowen, G. J., and
Cerling, T.: The Isotopic Geochemistry of CaCO3 Encrustations in Taylor
Valley, Antarctica: Implications for Their Origin, Acta Geogr.
Slov., 60, 2, https://doi.org/10.3986/AGS.7233, 2020.
Marrero, S. M., Phillips, F. M., Caffee, M. W., and Gosse, J. C.:
CRONUS-Earth cosmogenic 36Cl calibration, Quat. Geochronol., 31,
199–219, https://doi.org/10.1016/j.quageo.2015.10.002, 2016.
Martín-García, R., Alonso-Zarza, A. M., Frisia, S.,
Rodríguez-Berriguete, Á., Drysdale, R., and Hellstrom, J.: Effect
of aragonite to calcite transformation on the geochemistry and dating
accuracy of speleothems, An example from Castañar Cave, Spain,
Sediment. Geol., 383, 41–54, https://doi.org/10.1016/j.sedgeo.2019.01.014, 2019.
Matsuoka, N. and Murton, J.: Frost weathering: recent advances and future
directions, Permafrost Periglac., 19, 195–210,
https://doi.org/10.1002/ppp.620, 2008.
Meze, D.: The Triglav and Skuta glaciers, Acta Geogr., 3, 10–114, 1955.
Miller, G. H., Lehman, S. J., Refsnider, K. A., Southon, J. R., and Zhong,
Y.: Unprecedented recent summer warmth in Arctic Canada, Geophys.
Res. Lett., 40, 5745–5751, https://doi.org/10.1002/2013gl057188, 2013.
Ming, J., Xiao, C., Du, Z., and Yang, X.: An overview of black carbon
deposition in High Asia glaciers and its impacts on radiation balance,
Adv. Water Res., 55, 80–87, https://doi.org/10.1016/j.advwatres.2012.05.015,
2013.
Mol, D., Coppens, Y., Tikhonov, A. N., Agenbroad, L. D., MacPhee, R. D. E.,
Flemming, C., Greenwood, A., Buigues, B., de Marliave, C., van Geel, B., van
Reenen, G. B. A., Pals, J. P., Fisher, D. C., and Fox, D.: The Jarkov
Mammoth: 20,000-Year-Old carcass of a Siberian woolly mammoth Mammuthus
primigenius, in: Proceedings of the 1st International Congress on the World of Elephants, Rome, Italy, 16–20 October 2001, 305–309, 2001.
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A.: The
Alpine LGM in the boreal ice-sheets game, Nat. Sci. Rep., 7,
2078, https://doi.org/10.1038/s41598-017-02148-7, 2017.
Nussbaumer, S. U., Steinhilber, F., Trachsel, M., Breitenmoser, P., Beer,
J., Blass, A., Grosjean, M., Hafner, A., Holzhauser, H., Wanner, H., and
Zumbühl, H. J.: Alpine climate during the Holocene: a comparison between
records of glaciers, lake sediments and solar activity, J.
Quaternary Sci., 26, 703–713, https://doi.org/10.1002/jqs.1495, 2011.
Ortega, R., Maire, R., Devès, G., and Quinif, Y.: High-resolution
mapping of uranium and other trace elements in recrystallized
aragonite-calcite speleothems from caves in the Pyrenees (France):
Implication for U-series dating, Earth Planet. Sci. Lett., 237,
911–923, https://doi.org/10.1016/j.epsl.2005.06.045, 2005.
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A.,
and Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial
black carbon, PNAS, 110, 15216–15221, https://doi.org/10.1073/pnas.1302570110, 2013.
Peterson, J. A. and Moresby, J. F.: Subglacial travertine and associated
deposits in the Carstensz area, Irian Jaya, Republic of Indonesia,
Zeitschrift fur Gletscherkunde und Glazialgeologie, 15, 23–29, 1979.
Plan, L.: Factors controlling carbonate dissolution rates quantified in a
field test in the Austrian alps, Geomorphology, 68, 201–212,
https://doi.org/10.1016/j.geomorph.2004.11.014, 2005.
Pleničar, M., Ogorelec, B., and Novak, M.: Geologija Slovenije (The
Geology of Slovenia), Geološki zavod Slovenije, Ljubljana, Slovenia, 2009.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Ramovš, A.: O Zlatenski plošči sensu Kossmat, 1913, Slatenskem
pokrovu sensu Buser, 1986, Slatenskem narivu sensu Jurkovšek, 1987 in
Triglavskem pokrovu sensu Ramovš, 1985 (About the Zlatna (Kossmat 1913),
Slatna (Buser 1986; Jurkovšek 1987) or the Triglav Thrust (Ramovš
1985)), Geologija, 43, 109–113, https://doi.org/10.5474/geologija.2000.010, 2000.
Refsnider, K. A., Miller, G. H., Hillaire-Marcel, C., Fogel, M. L., Ghaleb,
B., and Bowden, R.: Subglacial carbonates constrain basal conditions and
oxygen isotopic composition of the Laurentide Ice Sheet over Arctic Canada,
Geology, 40, 135–138, https://doi.org/10.1130/g32335.1, 2012.
Renssen, H. and Isarin, R. F. B.: Surface temperature in NW Europe during
the Younger Dryas: AGCM simulation compared with temperature
reconstructions, Clim. Dynam., 14, 33–44, https://doi.org/10.1007/s003820050206,
1997.
Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., and
Fichefet, T.: The spatial and temporal complexity of the Holocene thermal
maximum, Nat. Geosci., 2, 411–414, https://doi.org/10.1038/ngeo513, 2009.
Risheng, L., Jun, C., Gengnian, L., and Zhijiu, C.: Characteristics of the
subglacially-formed debris-rich chemical deposits and related subglacial
processes of Qiangyong Glacier, Tibet, J. Geogr. Sci., 13,
455–462, https://doi.org/10.1007/bf02837884, 2003.
Rossi, C. and Lozano, R. P.: Hydrochemical controls on aragonite versus
calcite precipitation in cave dripwaters, Geochim. Cosmochim. Ac.,
192, 70–96, https://doi.org/10.1016/j.gca.2016.07.021, 2016.
Scholz, D. and Hoffmann, D.: 230Th/U-dating of fossil corals and speleothems, E&G Quaternary Sci. J., 57, 52–76, https://doi.org/10.3285/eg.57.1-2.3, 2008.
Serrano, E., González-trueba, J. J., Sanjosé, J. J., and Del
río, L. M.: Ice patch origin, evolution and dynamics in a temperate
high mountain environment: the Jopicou Negro, Picos de Europa (NW Spain),
Geogr. Ann. A, 93, 57–70,
https://doi.org/10.1111/j.1468-0459.2011.00006.x, 2011.
Sharp, M., Tison, J.-L., and Fierens, G.: Geochemistry of Subglacial
Calcites: Implications for the Hydrology of the Basal Water Film, Arctic Alpine Res., 22, 141–152, https://doi.org/10.1080/00040851.1990.12002776, 1990.
Sharpe, D. R. and Shaw, J.: Erosion of bedrock by subglacial meltwater,
Cantley, Quebec, Geol. Soc. Am. Bull., 101, 1011–1020,
https://doi.org/10.1130/0016-7606(1989)101<1011:Eobbsm>2.3.Co;2,
1989.
Šifrer, M.: New findings about the glaciation of Triglav – the Triglav
glacier during the last 8 years (1954–1962), Acta Geogr., 8, 157–210,
1963.
Šifrer, M.: The main findings concerning the Triglav Glacier in the
years (1963–1973) Acta Geogr., 15, 213–240, 1976.
Šifrer, M.: The Triglav Glacier in the years 1974–1985, Acta
Geogr., 26, 97–137, 1987.
Slovenian Environment Agency: Kredarica Climate Diagram, available at: http://meteo.arso.gov.si/met/sl/archive/, last access: 10 February 2020a.
Slovenian Environment Agency: Daily Climate Data per Weather Station, available at: https://www.arso.gov.si/en/, last access: 10 February 2020b.
Slovenian Environment Agency: Archive of Observed and Measured Meteorological Data in Slovenia, available at: http://meteo.arso.gov.si/met/sl/archive/, last access: 10 February 2020c.
Slovenian Environment Agency: Climate Change Impacts on Triglav Glacier, available at: http://kazalci.arso.gov.si/en/content/triglav-glacier, last access: 2 February 2020d.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and
Young, N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev.,
111, 9–34, https://doi.org/10.1016/j.quascirev.2014.11.018, 2015.
Souchez, R. A. and Lemmens, M.: Subglacial carbonate deposition: An isotopic
study of a present-day case, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 51, 357–364, https://doi.org/10.1016/0031-0182(85)90093-8, 1985.
Steinemann, O., Ivy-Ochs, S., Grazioli, S., Luetscher, M., Fischer, U. H.,
Vockenhuber, C., and Synal, H. A.: Quantifying glacial erosion on a
limestone bed and the relevance for landscape development in the Alps, Earth
Surf. Proc. Land., 45, 1401–1417, https://doi.org/10.1002/esp.4812, 2020.
Sugden, D. E. and John, B. S.: Glaciers and landscape: a geomorphological
approach, Arnold, London, UK, 1976.
Sweeting, M. M.: Some factors in the absolute denudation of limestone
terrains, Erdkunde, 18, 92–95, 1964.
Thomazo, C., Buoncristiani, J.-F., Vennin, E., Pellenard, P., Cocquerez, T.,
Mugnier, J. L., and Gérard, E.: Geochemical Processes Leading to the
Precipitation of Subglacial Carbonate Crusts at Bossons Glacier, Mont Blanc
Massif (French Alps), Front. Earth Sci., 5, 70,
https://doi.org/10.3389/feart.2017.00070, 2017.
Tičar, J., Lipar, M., Zorn, M., and Kozamernik, E.: Triglavsko podzemlje
(The underground world of Triglav Plateau), in: Triglav 240, edited by: Zorn, M., Mikša, P., Lačen Benedičič, I., Ogrin, M., and Kunstelj, A. M., Založba ZRC, Ljubljana, Slovenia, 131–145, https://doi.org/10.3986/9789610500841, 2018.
Tóth, G. and Veress, M.: Examination of karren surfaces in the foreland
of the glacier below Triglav, in: Glaciokarsts, edited by: Veress, M., Telbisz, T., Tóth, G., Lóczy, D., Ruban, D. A., and Gutak, J. M., Springer, Cham, Switzerland, 335–371, https://doi.org/10.1007/978-3-319-97292-3_8,
2019.
Triglav Čekada, M. and Gabrovec, M.: Zgodovina geodetskih meritev na
Triglavskem ledeniku (The History of Geodetic Surveys on Triglav Glacier),
Geod. Vestn., 52, 508–519, 2008.
Triglav-Čekada, M. and Gabrovec, M.: Documentation of Triglav glacier,
Slovenia, using non-metric panoramic images, Ann. Glaciol., 54,
80–86, https://doi.org/10.3189/2013AoG62A095, 2013.
Triglav-Čekada, M. and Zorn, M.: Thickness and geodetic mass balance
changes of the Triglav Glacier (SE Alps) in the period 1952–2016, Acta
Geogr. Slov., 60, 2, https://doi.org/10.3986/AGS.7673, 2020.
Triglav-Čekada, M., Radovan, D., Gabrovec, M., and Kosmatin-Fras, M.:
Acquisition of the 3D boundary of the Triglav glacier from archived
non-metric panoramic images, Photogramm. Rec., 26, 111–129,
https://doi.org/10.1111/j.1477-9730.2011.00622.x, 2011.
Triglav-Čekada, M., Barbo, P., Pavšek, M., and Zorn, M.: Changes in the Skuta Glacier (southeastern Alps) assessed using non-metric images, Acta Geogr.
Slov., 60, 2, https://doi.org/10.3986/AGS.7674, 2020.
Verbič, T. and Gabrovec, M.: Georadarske meritve na Triglavskem ledeniku
(The ground-penetrating-radar measurements of the Triglav Glacier),
Geogr. Vestn., 74, 25–42, 2002.
Wassenburg, J. A., Immenhauser, A., Richter, D. K., Jochum, K. P., Fietzke,
J., Deininger, M., Goos, M., Scholz, D., and Sabaoui, A.: Climate and cave
control on Pleistocene/Holocene calcite-to-aragonite transitions in
speleothems from Morocco: Elemental and isotopic evidence, Geochim.
Cosmochim. Ac., 92, 23–47, https://doi.org/10.1016/j.gca.2012.06.002, 2012.
ZRC SAZU: Triglav Glacier Camera, available at: http://ktl.zrc-sazu.si/, last access: 1 March 2020.
Short summary
The U–Th ages of subglacial carbonate deposits from a recently exposed surface previously occupied by the disappearing glacier in the SE European Alps suggest the glacier’s presence throughout the entire Holocene. These thin deposits, formed by regelation, would have been easily eroded if exposed during previous Holocene climatic optima. The age data indicate the glacier’s present unprecedented level of retreat and the potential of subglacial carbonates to act as palaeoclimate proxies.
The U–Th ages of subglacial carbonate deposits from a recently exposed surface previously...