Articles | Volume 9, issue 6
https://doi.org/10.5194/tc-9-2183-2015
https://doi.org/10.5194/tc-9-2183-2015
Research article
 | 
20 Nov 2015
Research article |  | 20 Nov 2015

A new methodology to simulate subglacial deformation of water-saturated granular material

A. Damsgaard, D. L. Egholm, J. A. Piotrowski, S. Tulaczyk, N. K. Larsen, and C. F. Brædstrup

Viewed

Total article views: 4,192 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,125 1,820 247 4,192 133 141
  • HTML: 2,125
  • PDF: 1,820
  • XML: 247
  • Total: 4,192
  • BibTeX: 133
  • EndNote: 141
Views and downloads (calculated since 13 Jul 2015)
Cumulative views and downloads (calculated since 13 Jul 2015)

Cited

Saved (final revised paper)

Saved (preprint)

Latest update: 05 Dec 2024
Download
Short summary
This paper details a new algorithm for performing computational experiments of subglacial granular deformation. The numerical approach allows detailed studies of internal sediment and pore-water dynamics under shear. Feedbacks between sediment grains and pore water can cause rate-dependent strengthening, which additionally contributes to the plastic shear strength of the granular material. Hardening can stabilise patches of the subglacial beds with implications for landform development.