Articles | Volume 9, issue 6
Research article
20 Nov 2015
Research article |  | 20 Nov 2015

A new methodology to simulate subglacial deformation of water-saturated granular material

A. Damsgaard, D. L. Egholm, J. A. Piotrowski, S. Tulaczyk, N. K. Larsen, and C. F. Brædstrup


Total article views: 3,839 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,880 1,739 220 3,839 106 113
  • HTML: 1,880
  • PDF: 1,739
  • XML: 220
  • Total: 3,839
  • BibTeX: 106
  • EndNote: 113
Views and downloads (calculated since 13 Jul 2015)
Cumulative views and downloads (calculated since 13 Jul 2015)


Saved (final revised paper)

Saved (preprint)

Latest update: 20 Feb 2024
Short summary
This paper details a new algorithm for performing computational experiments of subglacial granular deformation. The numerical approach allows detailed studies of internal sediment and pore-water dynamics under shear. Feedbacks between sediment grains and pore water can cause rate-dependent strengthening, which additionally contributes to the plastic shear strength of the granular material. Hardening can stabilise patches of the subglacial beds with implications for landform development.