Articles | Volume 9, issue 5
https://doi.org/10.5194/tc-9-1955-2015
https://doi.org/10.5194/tc-9-1955-2015
Research article
 | 
15 Oct 2015
Research article |  | 15 Oct 2015

Lead detection in Arctic sea ice from CryoSat-2: quality assessment, lead area fraction and width distribution

A. Wernecke and L. Kaleschke

Related authors

Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024,https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Spatial probabilistic calibration of a high-resolution Amundsen Sea Embayment ice sheet model with satellite altimeter data
Andreas Wernecke, Tamsin L. Edwards, Isabel J. Nias, Philip B. Holden, and Neil R. Edwards
The Cryosphere, 14, 1459–1474, https://doi.org/10.5194/tc-14-1459-2020,https://doi.org/10.5194/tc-14-1459-2020, 2020
Short summary

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Seasonal Evolution of the Sea Ice Floe Size Distribution from Two Decades of MODIS Data
Ellen Margaret Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica Martinez Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2024-89,https://doi.org/10.5194/egusphere-2024-89, 2024
Short summary

Cited articles

Andreas, E. L. and Murphy, B.: Bulk transfer coefficients for heat and momentum over leads and polynyas, J. Phys. Oceanogr., 16, 1875–1883, 1986.
Andreas, E. L., Paulson, C. A., William, R. M., Lindsay, R. W., and Businger, J. A.: The turbulent heat flux from Arctic leads, Boundary-Layer Meteorology, 17, 57–91, https://doi.org/10.1007/BF00121937, 1979.
Armitage, T. W. and Davidson, M. W.: Using the interferometric capabilities of the ESA CryoSat-2 mission to improve the accuracy of sea ice freeboard retrievals, IEEE T. Geosci. Remote, 52, 529–536, 2014.
Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1, Geoscience and Remote Sensing, IEEE T. Geosci. Remote, 36, 1088–1100, https://doi.org/10.1109/36.700993, 1998.
Beitsch, A., Kaleschke, L., and Kern, S.: Investigating high-resolution AMSR2 sea ice concentrations during the February 2013 fracture event in the Beaufort Sea, Remote Sens., 6, 3841–3856, 2014.
Download
Short summary
Leads in Arctic sea ice have a dominant effect on the exchange between the ocean and the atmosphere. Visual MODIS scenes are used to validate and improve the detection of leads from altimeter measurements of the satellite CryoSat-2. The rarely used maximum power of the returning signal shows the best classification properties. Lead area fraction and width distribution estimates based on CryoSat-2 complement other studies and deepen our understanding of lead characteristics.