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Abstract. Leads cover only a small fraction of the Arctic

sea ice but they have a dominant effect on the turbulent ex-

change between the ocean and the atmosphere. A supervised

classification of CryoSat-2 measurements is performed by a

comparison with visual MODIS scenes. For several parame-

ters thresholds are optimized and tested in order to reproduce

this prior classification. The maximum power of the wave-

form shows the best classification properties amongst them,

including the pulse peakiness. The sea surface height is de-

rived and its spread is clearly reduced for a classifier based on

the maximum power compared to published ones. Lead area

fraction estimates based on CryoSat-2 show a major fractur-

ing event in the Beaufort Sea in 2013. The resulting Arctic-

wide lead width distribution follows a power law with an ex-

ponent of 2.47± 0.04 for the winter seasons from 2011 to

2014, confirming and complementing a regional study based

on a high-resolution SPOT image.

1 Introduction

Sea ice affects all interaction between the ocean and the at-

mosphere, namely heat, mass and momentum transports in

ice-covered regions. It strongly reduces most of these types

of transport, thereby basically leaving these processes to

openings in the ice. These openings, called leads, appear

even in regions which are typically covered by thick ice, like

the central Arctic. Shear and divergence in the ice cover cre-

ate new leads (Miles and Barry, 1998). Those areas can ex-

hibit huge temperature differences between cold air and rel-

ative warm water. The resulting heat loss causes fast forma-

tion of new ice. Even leads covered by thin ice show much

higher heat fluxes than the surrounding thick ice (Maykut,

1978). The low albedo of leads promotes an energy flow

in the opposite direction which increases the amount of ab-

sorbed insolation, resulting in a warming of the underlying

water. Leads reduce the internal strength of the sea ice, en-

abling higher drifting velocities (Rampal et al., 2009) and are

expected to influence the atmospheric boundary layer chem-

istry (e.g., Moore et al., 2014).

Large-scale satellite remote sensing studies of lead oc-

currences have been done based on visual and thermal im-

agers (e.g., Lindsay and Rothrock, 1995; Willmes and Heine-

mann, 2015). They are generally limited by the resolution of

thermal infrared measurements of about 1 km and by the in-

fluence of clouds. By using passive microwave data, Röhrs

et al. (2012) avoided the requirement of free sky conditions

but reduced the resolution even further to 6.25 km. Despite

this resolution a good agreement with CryoSat-2 (CS-2) and

the Advanced Synthetic Aperture Radar (ASAR)-based esti-

mates of the lead occurrence for leads wider than 3 km has

been reported in Röhrs et al. (2012). CryoSat-2-based lead

detection is expected to be a good complement to previous

estimates as it combines an increased resolution of some hun-

dred meters with a strong atmospheric independence. The

quality of this approach has been assessed by Zygmuntowska

et al. (2013) for airborne surveys and is the topic of this study

for CS-2 measurements.

Apart from the lead area, also the width distribution is

important for the turbulent heat transport in ice-covered

regions. A convective boundary layer evolves over leads

which increases in thickness towards the downwind side

of the lead (Andreas et al., 1979). This boundary layer

dampens the heat flux per lead area which is therefore

higher for narrow leads than for wider ones. This has

led to different lead-width-dependent heat transfer formula-
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tions (e.g., Andreas and Murphy, 1986). Marcq and Weiss

(2012) show that the turbulent heat flux over leads is up to

55 % higher if using a power-law distribution down to a lead

width of 10 m instead of considering all leads as one large

area of open water.

The extent of Arctic sea ice has declined substantially over

the last decades (Serreze et al., 2007), while comparable

studies for the ice thickness are rare and struggle with un-

certainties (Lindsay and Schweiger, 2015). Ice thickness es-

timates based on upward-looking sonars on submarines (e.g.,

Rothrock et al., 2008) or moorings (Proshutinsky et al., 2009)

have a relatively sparse temporal and spatial coverage. Air-

borne and helicopter-based thickness measurements utilize

the strong difference between the electromagnetic induc-

tances of seawater and ice. They are of great value for re-

gional studies and validation, but are restricted by the lim-

ited number of conducted surveys (Haas et al., 2010; Renner

et al., 2013, 2014; Maaß et al., 2015).

Sea ice thickness is retrieved from satellites by radiome-

try, i.e., the influence of the ice thickness, salinity and tem-

perature on the emissivity and transmittance. Various pas-

sive thermal to microwave sensors have been used (AVHRR,

MODIS, SSM/I, AMSR-E, MIRAS) (Yu and Rothrock,

1996; Singh et al., 2011; Martin et al., 2005; Kaleschke et al.,

2012; Tian-Kunze et al., 2014). As the ice thickness informa-

tion saturates for all these sensors at a certain level, this ap-

proach is only capable of measuring relatively thin ice, typi-

cally well below 1 m (e.g., Kaleschke et al., 2010).

Another approach utilizes altimetry in order to derive the

snow or ice freeboard, i.e., the elevation difference between

the sea surface height (SSH) and snow or ice surface, respec-

tively. Laser signals only reach the snow surface, while radar

altimeters basically show the snow–ice interface elevation.

By considering the relevant densities and the snow thickness

those freeboards can be converted into ice thickness by as-

suming hydrostatic equilibrium. Sea ice thickness has been

derived fromKu band radar altimetry from the European Re-

mote Sensing satellites ERS-1 and ERS-2 as well as Envisat

and CS-2 (Laxon et al., 2003; Giles et al., 2008; Laxon et al.,

2013; Ricker et al., 2014). These radars are not restricted to

clear sky conditions, but limited knowledge of the snow load-

ing and the radar interaction with the snow layer currently

limits the accuracy of altimeter-derived sea ice thickness es-

timates (Willatt et al., 2011; Kwok, 2014). Advantages of the

radar on CS-2, over earlier Ku band altimeters are the re-

duced footprint size and noise due to the synthesis of over-

lapping measurements, its orbit which allows a coverage up

to 88◦ N and S and the potential of interferometric measure-

ments (Wingham et al., 2006). In most parts of the Arctic

Ocean, the Synthetic Aperture Radar (SAR) mode is used

except for many coastal areas where the SAR Interferomet-

ric (SARIn) mode is applied. Until July 2014 the so-called

“Wingham Box” (80–85◦ N and 100–140◦W) was another

area of SARIn-mode measurements.

The SSH is crucial for altimeter-based ice thickness re-

trievals. For this reason the altimeter measurements are sepa-

rated into those from ice and those from leads (see Fig. 1 for

examples from CS-2). The lead measurements are used to

derive the SSH, which acts as reference for the freeboard.

Leads covered by thin ice and falsely detected leads (i.e.,

thick ice) result in an overestimation of the SSH and there-

fore in a negative bias in the derived freeboard and thickness.

If considering only a very few, assured lead measurements,

the statistical error increases (Armitage and Davidson, 2014).

It is therefore of high interest to find a lead detection method

which is very trustworthy and detects as many leads as pos-

sible.

In this study the quality of CS-2-based lead detection pro-

cedures is assessed by a comparison with MODIS measure-

ments. Previously published classifiers are implemented and

compared with newly derived ones in a receiver operating

characteristics (ROC) graph. The most promising one is sub-

sequently used to derive the lead area fraction and the lead

width distribution. Thereby this study attempts to close a gap

of knowledge about the differences of lead detection proce-

dures from CS-2 and makes suggestions for improvements,

which has direct implications for sea ice thickness estimates.

2 Methods

2.1 The ground truth

In order to optimize and compare the performance of differ-

ent classification routines, we choose a supervised classifi-

cation approach. Visual Moderate Resolution Imaging Spec-

troradiometer (MODIS) measurements can be used to dis-

tinguish between sea ice and water (Su et al., 2012). Two

MODIS instruments are in operation on the NASA satel-

lites Terra and Aqua. They cover the earth surface every 1

to 2 days and measure in 36 spectral bands from visual (used

here) to infrared (Barnes et al., 1998). We identify land and

cloud influences manually and are therefore able to rely only

on the MODIS band 2 (around 857 nm wavelength) level 1B

reflectance as reference data. It has a resolution of 250 m and

seems to be even more suited to identify leads than band 1

(not shown). Dark areas with sharp edges and linear shapes

in the MODIS images are interpreted as leads. CS-2 mea-

surements from these areas, recorded less than 1 h before or

after the MODIS acquisition, are manually labeled as lead. In

the same way we identify CS-2 measurements of ice, while

all measurements with a mixture of both classes within the

footprint are excluded from this study (see also Fig. 2a). The

CS-2 footprint is assumed to be 300 m in and 1500 m across

flight direction. In the following, this ice/lead information is

considered as ground truth, regardless of possible mislabel-

ing, for example, caused by unexpected high ice velocities.

The ground truth consists of 722 lead and 5768 ice mea-

surements. Note that this method is limited by the resolu-

The Cryosphere, 9, 1955–1968, 2015 www.the-cryosphere.net/9/1955/2015/



A. Wernecke and L. Kaleschke: CryoSat-2 lead detection 1957

Figure 1. Typical CryoSat-2 waveforms from ice (left panel) and a lead (right panel). The definition of the leading edge width (LEW),

trailing edge width (TEW) and maximum power (MAX) are illustrated, while the pulse peakiness (PP) is inversely proportional to the gray

areas that normalized waveforms would have. The bin number can be converted into delay time. Note the different scaling factors of the y

axis (×10−13 and ×10−10 for the ice and lead waveform, respectively).

Figure 2. MODIS band 2 scene from 6 March 2013 in the southern

Beaufort Sea combined with a CS-2 track taken 83 min later on.

The CS-2 samples have been classified as lead (red) and ice (blue)

manually (a) or by PP1 (b), MAX1 (c), RI14 (d) and LX13 (e).

The classifier from Röhrs et al. (2012) detects no leads within this

section.

tion of MODIS. CryoSat-2 measurements which look like

they originate from ice in MODIS scenes can actually con-

tain small amounts of leads. See Sect. 4.2 for a discussion on

this circumstance. The ground truth is acquired from Febru-

ary to the beginning of May in 2012 and 2013 from seven

MODIS granules in the eastern Beaufort Sea and north of the

Canadian Arctic Archipelago. For this time of the year opti-

cal MODIS scenes are available and surface melting can be

ruled out. Within this study we use CryoSat-2 Level 1b data

with processor versions “SIR1SAR/4.0” and “SIR1SAR/4.1”

(Baseline B). These two SAR mode versions are equivalent.

2.2 Relation to physical properties

Large-scale roughness results in a spread in time of the

received CS-2 signal as exposed parts of the surface are

reached earlier than low-lying parts. Roughness with a scale

smaller than the wavelength (∼ 2.2 cm for Ku band) reduces

the specularity of the surface. Therefore measurements of the

same position from altering incidence angles are more sim-

ilar for rough surfaces (Wingham et al., 2006). In addition

areas further away from the nadir point have a stronger con-

tribution, leading to an emphasized signal following the first

(nadir) peak (Laxon, 1994a). Energy conservation conditions

a reduced maximal receivable signal if the emitted power is

scattered in all directions by a rough surface.

The characteristic impedance of the surface layer might

also influence the signal amplitude (Laxon, 1994a). If the dif-

ference in impedance at 13.5 GHz of the uppermost layer and

the air is small, there is less reflection and more transmission

into the ice/snow. Within the medium it is partly absorbed

and scattered by inhomogeneities, again leading to a spread

of the signal with lower maximum values and a more homo-

geneous angular distribution. This process could for example

be favored by a layer of snow with moderate temperature.

As leads are locally bound, the fetch is too small for bigger

waves to evolve in the water. The thin ice cover, if present,

is yet neither physically deformed nor covered with snow.

Furthermore the microstructure of young ice is more com-

pact than of older ice as most brine pockets are filled and

fewer connections have evolved. Therefore leads can be char-

acterized by their commonly flat surface with relatively high

impedance difference to the air. The returns originating from

leads are expected to be compressed in time with higher max-
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Figure 3. Flow chart of the cross-validation scheme used.

imum values and stronger incidence angle dependency (spec-

ular returns).

The Doppler shift is used in the CS-2 SAR mode to split

each returning echo into 64 beams with different along-track

incidence angles. For each processed point on the ground ,all

beams targeting this point from altering satellite positions are

combined to one waveform (Wingham et al., 2006) i.e., the

returned power as function of time (see Fig. 1 for typical

ice and lead waveforms). The following waveform-based pa-

rameters are used: maximum power, pulse peakiness, leading

edge width and trailing edge width. While in the process of

waveform formation the information of the angular depen-

dency is disregarded, the beams are additionally integrated

over time (summed) individually. Thereby the incidence an-

gle information is maintained in exchange for the temporal

development. The returning energy as function of beam num-

ber (i.e., incidence angle) is approximated by a fitted Gaus-

sian distribution curve. We use the stack standard deviation

and the stack excess kurtosis parameters which are based on

this curve.

2.3 Parameter definition

– The maximum power (MAX) is the highest recorded

power of the calibrated waveform in Watts.

– The pulse peakiness (PP) has been established by Laxon

(1994b) and is defined as the MAX divided by the accu-

mulated power (PWF) of all bins constituting the wave-

form:

PP=
max

(
PWF

)
128∑
i=1

PWF
i

, (1)

which is the same definition as used by Armitage and

Davidson (2014), while the values of Laxon et al. (2013)

are divided by 100 and those of Ricker et al. (2014) by

128 for consistency.

– The left and right pulse peakiness (PPL and PPR)

from Ricker et al. (2014) for Baseline B data are defined

as (R. Ricker, personal communication, January 2015):

PPL=
15 ·max

(
PWF

)
imax−2∑
i=imax−6

PWF
i

, (2)

PPR=
15 ·max

(
PWF

)
imax+6∑
i=imax+2

PWF
i

, (3)

where imax is the index of the maximal value of the

waveform. The PPL and PPR have been proposed in

order to reject off-nadir leads, the influence of which

can not be quantified based on our methodology (see

Sect. 2.1). Therefore the PPL and PPR are not fully in-

cluded in this study. However, they are defined as we use

the classifier of Ricker et al. (2014) for comparisons.

– The leading edge width (LEW) is defined as the width

between 1 and 99 % of the amplitude of a Gaussian fit to

the leading edge of the waveform. The fitted area starts

at the first bin, reaching 1 % of the maximum power and

ends at the second bin, following the first peak. The first

peak is the first local maximum reaching at least 50 %

of the maximum power. To avoid bimodal waveforms,

we exclude measurements with a first peak smaller than

80 % of the maximum power from the ground truth.

About 7.6 % of the waveforms are discarded in this

way. Similar fits and constrains are used by Kurtz et al.

(2014).

– The trailing edge width (TEW) is defined as the width

between 99 and 1 % of the amplitude of an exponen-

tially decaying fit to the trailing edge of the waveform.

The fitted area starts at the position of the maximum

power and ends at the last bin (e.g., Legresy et al.,

2005).

– The stack standard deviation (SSD) is the standard de-

viation (SD) of the mentioned Gaussian distribution of

the energy as function of beam number (i.e., incidence

angle). The SSD describes the width of the Gaussian; it

is not the SD of the energy values themselves. We use

the SSD in units of “beams” but it can also be expressed

in degrees. Due to the more specular characteristics of

leads, the spread of power with incidence angle is ex-

pected to be smaller and so is the SSD for leads (Wing-

ham et al., 2006).

– The stack excess kurtosis (SK) is also obtained from

the Gaussian approximation of the energy as function

of beam number. Continuous Gaussian functions have

in general an excess kurtosis of zero, so how can the

SK reach other values? This is attained by evaluating

the Gaussian at the beam numbers. The excess kurtosis

of these discrete values is the SK (Veit Helm, personal
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communication, June 2014; Wingham et al., 2006). The

fitting of the Gaussian to the measured beam energies

and subsequent evaluation of it at the very same posi-

tions can be understood as a smoothing procedure. It is

worth mentioning that this procedure might also limit

the information the SK provides. The kurtosis is a mea-

sure of the peakedness which is expected to be higher

for leads.

2.4 Threshold optimization

Threshold-based classifications are widely used to identify

leads from Ku band altimeters. We use a repeated random

cross-validation technique to derive and test thresholds (2)

(interested readers are referred to chapter 9 in Duda et al.,

2001). 2 consists of one threshold for each parameter used

for the respective classifier. The cross-validation involves

a random separation of the ground truth samples into a train-

ing and a testing subset, each of which consist of 50 % of

all samples. From the training subset we derive 2 by using

Eq. (4) and apply it to the testing set to investigate its perfor-

mance. The random assignment into subsets and the testing

of the newly derived 2 is repeated 200 times for each clas-

sifier to get an overall performance and an estimation of its

spread. These steps are illustrated in Fig. 3.

As mentioned in Sect. 1 there are different applications for

lead detection algorithms also resulting in different demands

on its characteristics. One plausible aim is to reduce the total

number of false detections to a minimum. But one might also

be interested in a more conservative lead detection by reduc-

ing the amount of ice being detected as lead (false leads) at

the cost of fewer correctly detected leads (true leads). A more

conservative detection might be used for a freeboard retrieval

as false leads might result in a bias while high true lead rates

are not always of high importance.

To take these different demands into account we include

a weighting factor w in the cost function.

cost(2)= w ·False_Ice(2)+False_Leads(2), (4)

where False_Ice represents the number of lead samples clas-

sified as ice. 2 is derived by minimizing the cost func-

tion on the training subset using the Nelder–Mead simplex

algorithm (Nelder and Mead, 1965) with up to 400 ini-

tial guesses to find the global minimum. The Nelder–Mead

method is an unconstrained direct search algorithm for mul-

tidimensional minimization. This optimization reduces pri-

marily false leads for 0<w < 1, while for w = 1 the total

number of false classifications (false ice + false leads) is

minimized. We use the parameter acronym with the weight

as index to point at the corresponding one-dimensional clas-

sifier.

This methodology is applied to all single parameters and

all possible pairs of them. In the latter case, 2 is derived as

the combination of both thresholds with the smallest value of

the cost function.

3 Results

3.1 Classification performance

In Fig. 2 the CS-2 track essentially crosses three wider leads,

two of which are brighter at the northern side. This indi-

cates that they are covered by ice on this side, while the

southern side might exhibit open water. The third wider lead

around 71.2◦ N and a thinner one at 71.75◦ N seem both to

be completely covered by thin ice. The manual classification

in Fig. 2a only visualizes the methodology as the time differ-

ence is larger than 1 h and this scene is therefore not part of

the ground truth. Gaps in the track occur when the MODIS

information of CS-2 footprints cannot be assigned unam-

biguously to leads or ice. The PP1, MAX1 and the classifier

developed by Ricker et al. (2014) (hereinafter called RI14)

show strong similarities as they detect all relevant leads while

lead detections are very rare where the MODIS scene shows

ice. However all of them show in some cases a mixture of ice

and lead detections within wide leads (not shown). The clas-

sifier used by Laxon et al. (2013) (hereinafter called LX13)

detects all visible leads without a significant number of miss-

ing lead detections, but it also detects leads where no or only

weak indications for them can be found in the MODIS scene.

Figure 4 shows a receiver operating characteristics (ROC)

graph of all tested classifiers. Each classifier is represented

by one point in the graph, the position of which is defined by

its true lead rate (TLR; the amount of correctly detected leads

divided by the number of tested lead samples) and false lead

rate (FLR; the number of ice measurements in the ground

truth detected as lead divided by the number of tested ice

samples). The upper left corner corresponds to ideal clas-

sifiers and the principle diagonal represents random assign-

ments. For each parameter and pairs of them, we use dif-

ferent weights, resulting in different 2 and corresponding

performances. For single parameter classifiers, 15 different

weights (0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1, 2, 5,

10, 30, 100) are applied to capture the development of the

performance (from the lower left corner to the upper right

in Fig. 4) while w = 0.001, w = 0.5 and w = 1 are used in

the two-dimensional case. To follow the performance of e.g.,

MAX-based classifiers one can start with small w, implying

high values of 2 which only detects a few leads (lower left

corner in Fig. 4). With increasing w and decreasing 2, the

TLR increases in the beginning much faster than the FLR.

At some point the number of correct lead detections is mostly

constant, while a further lowering of 2 mainly increases the

number of ice measurements which are detected as lead. As

relative performances are shown, the classifier closest to the

upper left corner is not necessarily the “best” one but if one

classifier is on the upper left side of another it can be consid-

ered as superior. Further remarks on ROC graphs are given

by Fawcett (2006).

It is, at this point, not important how the thresholds (2)

are derived but only the combination of its value and perfor-
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Figure 4. ROC graph of tested classifiers with altering thresholds (2) on one (connected by lines) and two (marker) parameters as well as

predefined classifiers (magenta markers). RO12 corresponds to the classifier used in Röhrs et al. (2012). In the two-dimensional case, the

color indicates one of the parameters, and the shape the other one. The inset is a zoom of small false lead rates.

mance. This allows us to compare the classifiers found here

with those that other authors have developed, independent

from the optimization routine.

Classifiers based on the maximum power (MAX) appear

on the upper left side of all others on the whole range of

Fig. 4. Only classifiers using two parameters including the

MAX (black marker) reach the single-feature MAX classifi-

cations and are in all cases very close to them. All other clas-

sifiers based on pairs also show very similar results to that

classifier based on the single, more suited parameter within

its pair.

The PP- and LEW-based classifiers show strong similari-

ties and have the second-best combinations of true and false

lead Rates.

Figure 5a illustrates the spread within the runs in terms

of the SD of the true and false lead rates. The differences

between all shown one-dimensional classifiers and the cor-

responding two-dimensional ones are clearly smaller than

the inherent fluctuations and are therefore considered as not

significant. The classifiers based on the MAX are separated

from the others by more than their SDs for small weights,

while they are not for higher weights. However, the fluctu-

ation in classifier performance of individual runs with the

same weight occur mostly in the direction of the mean perfor-

mances of neighboring weights on the same parameter (i.e.,

along the lines) as shown in Fig. 5b.

3.2 Sea surface height

The SSH is calculated as a second stage of assessing the qual-

ity of classifiers. To derive the SSH from leads is a popular

application; to test the classifier behavior in this context is

therefore a very practical approach. This is done statistically

by investigating the stability of SSH estimates from different

classifiers.

The function A sinc2(πBw(τ − τ0)) is fitted to the wave-

form from PWF
imax−2 to PWF

imax+2. Where A is the amplitude,

Bw = 320 MHz is the received bandwidth and τ the delay

time. τ0 is the center of the fit and is used as the tracking

point, i.e., the delay time which is assumed to correspond

to the return from the main scattering surface. Kurtz et al.

(2014) have shown that specular returns are well approxi-

mated by a sinc2 function and that the tracking point should

be defined close to the maximum of the waveform. The range

is corrected for atmospheric influences (ionosphere, wet and

dry troposphere, dynamic atmosphere and the inverse baro-

metric effect) and tides (namely: ocean, long period, solid

earth, polar and ocean loading tides) as provided in the CS-

2 L1B data. The surface elevation of lead measurements is

considered as SSH. All SAR mode measurements from Jan-

uary to March of the years 2011 to 2014 are brought to a

10km× 10km grid.

Figure 6 shows the SSH anomaly, i.e., the difference of

individual measurements along a CS-2 track from the multi-

year mean SSH field. The LX13 shows the largest number of

lead detections and the strongest SSH anomalies. The other

The Cryosphere, 9, 1955–1968, 2015 www.the-cryosphere.net/9/1955/2015/
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Figure 5. (a) ROC graph including error estimates in terms of SD of

the 200 runs for each weight of the single-feature classifiers using

the MAX, PP and LEW as well as the performances and SDs of the

predefined classifiers. For comparison, the performances of selected

two-dimensional classifiers are included. (b) Performances of each

individual run being part of the single-feature classifiers using the

MAX, PP and LEW with weights of 0.5 and 1 (dots) in combination

with mean values for all weights (lines).

three classifiers show a more similar behavior but with the

MAX1 having a notably reduced number of large (outside of

±0.2 m) SSH anomalies.

The mean SSH field could be used as reference for ice

thickness estimates. The variance around it acts as an in-

dicator for its reliability and is caused by SSH variability,

noise and the lead detection behavior. We expect differences

of the variance between the classifiers to be caused only by

the detection behavior, namely the inclusion/exclusion of ice

and/or off-nadir lead measurements. Figure 7 shows the vari-

ance distribution of selected classifiers based on the gridded

SSH estimates. The MAX1 shows in general the smallest

Figure 6. Sea surface height anomaly from different classifiers

along a typical descending CS-2 track from 6 March 2013. The

shaded segment corresponds to the section shown in Fig. 2.

variances, while the histograms converge to zero with in-

creasing variances for all classifiers in a similar way.

3.3 Spatial distribution

In the following sections we use the MAX1 which has been

derived by minimizing the total number of false classifica-

tions and its results are therefore taken as the best represen-

tation of the overall lead occurrence.

Figure 8 shows the lead fraction in the Arctic region as

derived from CS-2 by dividing the number of detected lead

measurements by the total number of measurements from

January to March 2011. The AMSR-E Arctic lead area frac-

tion (Röhrs and Kaleschke, 2012; Röhrs et al., 2012) (down-

loaded in September 2014) is also shown, combined over the

same period and brought to the same spatial resolution.

Lead detections from CS-2 are most common in Baffin

Bay, the Fram Strait region, the northern Barents Sea and

the Kara Sea, as well as in the western Laptev Sea and

the Chukchi Sea, all with lead fractions up to around 15 %

(Fig. 8a). The central Arctic, including the area north of the

Canadian Arctic Archipelago and the northern Canada Basin,

show low lead fractions of around 0–1.5 %. In the southern

Beaufort Sea and especially its shear zone next to the coast-

line, lead fraction values of up to 6 % occur.

A somewhat different picture of the lead fraction pattern

emerges by using the AMSR-E Arctic lead area fraction

from Röhrs et al. (2012) (Fig. 8b). In areas covered by both

estimates, the CS-2-based one mostly appears to be higher

than the AMSR-E-based estimate. This is not the case in

the southeastern Beaufort Sea, where the AMSR-E product

shows values of 15 % and more, while they reach from 1.5

to 5 % for the CS-2-based estimate. We observe reasonable

agreements in the Fram Strait region, the East Siberian Sea
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Figure 7. Histograms of grid cell SSH variance from different clas-

sifiers. Only values based on at least three lead detections are con-

sidered.

and the Chukchi Sea. Increased values occur for both esti-

mates near islands like Svalbard, Franz Josef Land, Sever-

naya Zemlya and Wrangel Island. However there are big dif-

ferences between the data sets in the Baffin Bay, the Fram

Strait regions close to the ice edge, the northern Barents Sea

and the Kara Sea, where CS-2 consistently detects more leads

than the AMSR-E lead area fraction indicates.

While a daily open ocean mask is provided for the AMSR-

E product, we consider all areas north of 65◦ N for the CS-

2-based estimates. The ice edge on the Atlantic side, as indi-

cated by the AMSR-E mask, agrees well with the transition

of CS-2 lead fractions from zero to higher values.

By the end of February 2013 the whole Beaufort Sea was

pervaded by leads. Favored by storms, in mid-February, the

ice started to move into the direction of the Bering Strait,

causing a divergence in the pack ice. This is the reason for

the opening of leads, beginning in the western part and prop-

agating to the east. This process accelerated around 27 Febru-

ary after which all but the fast ice at the Canadian coast and

the sea ice at the Canadian Arctic Archipelago was fractured.

See also Beitsch et al. (2014) for further descriptions.

By comparing the CS-2 lead fractions from February and

March 2013 (Fig. 9), the pattern of this fracture event is re-

produced with a proper shape and amplitude. Most lead pat-

terns can be observed in both months, in many cases slightly

decreasing in amplitude towards March. However, while in

February, noticeable amounts of leads are only detected in

the western part of the Beaufort Sea, the complete region

shows 8 to 15 % lead coverage in March.

3.4 Apparent lead width

To investigate the lead width distribution we use a proxy

which we call apparent lead width. The apparent lead width

is the number of consecutive MAX1 lead detections multi-

plied by the approximate distance between two positions of

300 m. It can be seen as a measure of the CS-2 track interval

over a crossed lead or as the width of a lead how it appears

in the one-dimensional domain of the CS-2 track. If the lead

orientation is orthogonal to the CS-2 track, the apparent lead

width is our best estimate of the actual lead width. We do not

allow any ice detection within a lead which will in case of

false detections split a lead into smaller ones.

The apparent lead width distribution follows a power law

in winter months with an exponent a of 2.47 for values of

600 m and more (Fig. 10). A quantity z is classified as being

power law-distributed if its probability density function p(z)

satisfies:

p(z)∝ z−a . (5)

It is derived following the approximation of Clauset et al.

(2009) for discrete distributions with a simple adjustment for

a step size of 300 m as shown in Eq. (6).

a ≈ 1+NZ

(
NZ∑
i=1

ln
zi

zmin−
1
2
· 300m

)−1

(6)

For the calculation of the power-law exponent, only apparent

lead widths zi with a width equal or higher than zmin = 900m

are considered, with NZ being the amount of them. A line

representing a power law with the calculated exponent is dis-

played in Fig. 10. It shows the validity of this approximation

down to 600 m as the slopes of both lines agree very well.

The interannual variability is small, with exponents be-

tween 2.42 in 2013 and 2.52 in 2011 with a SD of 0.04

amongst all 4 years. Differences between January, February

and March of the same year are even smaller while the ex-

ponent decreases towards spring and autumn. All calculated

distributions follow a power law for apparent lead widths of

600 m and more.

4 Discussion

4.1 Classification performances

Classifiers based on the MAX parameter generally show the

best ratio between true and false lead rate. A classifier us-

ing MAX> 2.58× 10−11 W as threshold (MAX1) detects

68.18 % of all leads correctly, while only 3.41 % of the tested

ice measurements in the ground truth are detected as leads.

The PP1 using 0.35 as threshold has a TLR of 64.66 % (in-

stead of 68.18 %) and a FLR of 4.09 % (instead of 3.41 %).

The differences are even stronger for higher thresholds of

1.22× 10−10 W and 0.425, respectively (MAX0.5 and PP0.5,

Table 1).

The performances of individual runs overlap only slightly

forw = 1 and are well separated forw = 0.5. This shows that

the performance improvement is significant. The increased
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Figure 8. Lead fraction derived from CS-2 SAR mode (a) and from Röhrs et al. (2012) (b) on a north polar stereographic grid with a resolution

of 99.5km× 99.5 km, merged from January to March 2011. Only values based on at least 2000 CS-2 measurements north of 65◦ N (a) or

with a grid cell data coverage of 10 % or more (b) are shown. Missing CS-2 estimates north of Canada are caused by the use of the SARIn

mode in the Wingham Box.

Figure 9. Lead fraction derived from CS-2 SAR mode on a north polar stereographic grid with a resolution of 99.5km× 99.5 km from

February (a) and March 2013 (b). Only lead fraction values north of 65◦ N based on at least 1000 measurements are shown. Missing

estimates north of Canada are caused by the use of the SARIn mode in the Wingham Box.

fluctuation in the direction of neighboring weights in Fig. 5b

is likely to be caused by a variability of the thresholds caused

by the repeated optimization.

For airborne surveys with a device very similar to SIRAL

on CS-2, Zygmuntowska et al. (2013) also found the MAX

parameter to have fewer false lead classifications than all

other parameters. The best combination of parameters (MAX

& TEW) with a Bayesian classifier improves its rate only

slightly from 6.5 to 6.2 %. Zygmuntowska et al. (2013) de-

fine the false lead classification Rate (FLCR) as the percent-

age of all lead detections originating from sea ice. This is

different to our false lead rate as we use the number of true

ice measurements as a base. The FLCR calculated from the

absolute values in Table 1 are 28.6 and 12.5 % for MAX1

and MAX0.5, respectively. One reason for higher error rates

of CS-2 is the reduced resolution of 300m× 1500 m in con-

trast to around 10m× 50 m for the airborne device; thereby

it becomes much more likely that different surface types oc-

cur within one footprint. Further we have to allow for some

temporal differences in the data acquisition and have to col-

locate the data sets, while for the airborne surveys optical

images are taken simultaneously. Deficiencies of the ground

truth which might be caused by ice drift and opening/closing

of leads between the data acquisition, collocation and unno-

ticed narrow leads increase the error rates which might there-

fore be overestimated.

Compared to their MAX classifier, the PP classifier

of Zygmuntowska et al. (2013) detects more leads from both,

ice and lead measurements. This is directly connected to ap-

plied thresholds and is not a parameter property. For a solid

decision as to which parameter is suited best for lead detec-

tion, it is necessary to vary the thresholds.
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Table 1. Selected classifier performance. The last three classifiers are (from bottom to top): RI14, from Röhrs et al. (2012) and LX13. TL:

true leads; FL: false leads; TI: true ice; FI: false ice; TLR and FLR: true and false lead rates (%); eTLR and eFLR: SDs of TLR and FLR

within runs (%). A list of all tested classifier performances is provided in the Supplement.

Par. w 2 TL FL TI FI TLR FLR eTLR eFLR

MAX 10−3 4.28× 10−10 10 336 226 576 597 61 841 14.32 0.04 2.07 0.05

MAX 0.5 1.22× 10−10 29 435 4220 572 634 42 711 40.80 0.73 3.26 0.24

MAX 1 2.58× 10−11 49 204 19 689 557 143 22 964 68.18 3.41 5.89 0.73

MAX 1 2.55× 10−11 48 808 19 580 557 305 23 307 67.68 3.39 5.61 0.72

TEW 200

PP 0.5 0.425 22 677 7728 569 244 49 351 31.48 1.34 8.62 0.71

PP 1 0.35 46 602 23 623 553 307 25 468 64.66 4.09 4.94 0.66

PP – 0.18 59 809 73 003 504 042 12 146 83.12 12.65 1.40 0.42

SSD 4

MAX – 6× 10−10 6576 00 576 811 65 613 9.11 0.00 1.12 0.00

PP – 0.3125 43 875 28 599 548 145 28 381 60.72 4.96 1.74 0.27

SSD 4

SK 40

PPL 40

PPR 30
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Figure 10. Apparent lead width distribution from all CS-2 SAR

mode ocean measurements north of 65◦ N in winter season (JFM)

from 2011 to 2014. The distribution of a power law with exponent

of 2.47 is included for comparison, forming a straight line in a dou-

ble logarithmic presentation. See text for definition of the apparent

lead width.

Three classifiers developed by other authors are included

in this study. With the same number of false leads, the

true lead rates can be increased for our data set from 9 to

∼ 13 % (Röhrs et al., 2012), from 83 to ∼ 89 % (LX13) or

from 61 to ∼ 79 % (RI14) if a MAX-based classifier is used

instead (Fig. 4).

The shown classifiers using two parameters detect a lead

if both thresholds are reached. This logical “and” criterion is

now replaced by an “or”. A classifier based on the MAX and

the PP could for example define a measurement as a lead if

its MAX value is above 10−11 W or if its PP value is above

0.3 (one of those is now sufficient). This influences the num-

ber of false ice and false lead detections (i.e., the cost func-

tion). As a result, our example has higher thresholds than it

would have for the same weight and parameters using the

“and” criterion. Performing the same test as before but now

using the “or” criterion for all pairs of parameters achieved

no improvement of the classification (not shown).

The fact that combining two parameters seems to have no

benefit at all indicates that the parameters are basically all

utilizing the same physical information and that the instru-

ment and fading noises have either a correlated influence on

all parameters or the influence is not significant at all. As

some of the parameters are derived in a very different way

(e.g., waveform- and stack-based ones) we do not expect the

noise to affect them equally. We conclude that noise probably

plays only a minor role in the classification errors.

4.2 Narrow leads and sea surface height

It has been shown that leads which only cover a small frac-

tion of a radar altimeter footprint can dominate the signal due

to the high amplitude of specular returns (Drinkwater, 1991).

Therefore CS-2 detects leads which are simply not visible for

MODIS despite its higher resolution. The fraction of these

leads in the ice class of the ground truth cannot be quanti-

fied by our approach. These narrow leads either cover the
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nadir point or not, while leads covering the whole footprint

(“true leads”) do for sure. Therefore one could expect true

lead measurements to ensure a higher quality (see Sect. 4.3)

for the derivation of the SSH.

This expectation is supported by the smaller spread of the

SSH estimate based on the MAX1 compared to the PP1, with

nearly the same number of lead detections (true + false leads;

Table 1). This advantage, on the other hand, certifies that nar-

row, unnoticed leads in the ice class do not reverse the ROC

analysis.

4.3 Off-nadir leads

As mentioned before, leads which are not directly in nadir

direction can dominate the signal. As this can cause a bias in

elevation estimates, Ricker et al. (2014) introduced the left

and right pulse peakiness to avoid off-nadir leads. It has fur-

ther been shown that it is, to some extent, possible to reduce

the influence of off-nadir leads by increasing the pulse peaki-

ness threshold of a single parameter classifier (Armitage and

Davidson, 2014). This is done at the cost of discarding up to

60 % of the lead detections and thereby increasing the statis-

tical error. The underlying process allowing for this reduction

is the influence of the surface orientation towards the sen-

sor on the maximum return. The relative orientation, favoring

high maximum values the most, is expected to be found close

to the nadir point. The further away from this point the main

scattering surface (i.e., the lead) is, the more power is re-

flected away from the sensor instead of back towards it. This

process influences the MAX value in the first place which

then has implications for the PP (Armitage and Davidson,

2014). Therefore it is reasonable to assume that the influence

of off-nadir leads is also reduced for high MAX thresholds,

potentially even stronger than for the PP, as the process caus-

ing this reduction has a more direct impact on it. This as-

sumption is supported by the reduced SSH variance of the

MAX1 even though we cannot say whether this reduction is

caused by the elimination of off-nadir leads or incorrectly

classified ice measurements (or a combination of both).

4.4 Spatial distribution

The CS-2 lead fraction shows a reasonable spatial distribu-

tion. It is small in the central Arctic and north of the Cana-

dian Arctic Archipelago which are typical regions of thick

multi-year ice. It shows high values in regions of high drift-

ing velocities or those known to favor the development of

polynyas like the Fram Strait, the western Laptev Sea and the

Chukchi Sea. The lead fractions also increase around most

islands and coasts which introduce shear between the land

fast ice and the drifting pack ice. Small lead fractions in the

eastern Laptev Sea and the western parts of the East Siberian

Sea could indicate the presence of large amounts of land fast

ice. The absolute lead fraction values tend to be higher but

are mostly in agreement with those of Lindsay and Rothrock

(1995). They found lead fractions of 2 to 3 % for the central

arctic and 6 to 9 % in the peripheral seas in the winter using

the Advanced Very High Resolution Radiometer (AVHRR).

In nearly all regions, the CS-2 lead fraction exceeds the

AMSR-E Arctic lead area fraction from Röhrs et al. (2012)

(Fig. 8). While the AMSR-E product only detects most leads

with a width of 3 km and more, a width of at least some hun-

dred meters is sufficient for detection by CS-2. As shown in

Sect. 3.4, the apparent lead width follows a power law on

the scale of kilometers, implying that measurements from

narrow leads largely outnumber those from wider leads. In

contrast to the CS-2 lead fraction, the AMSR-E product ad-

ditionally does not include very large regions of thin ice like

huge polynyas, as a spatial high-pass filter is used.

The ice edge towards the North Atlantic is captured by

both approaches quite similarly. In Fig. 8a we expect the ice

edge to be at the interface between areas of no lead detections

around the Norwegian and central Barents Sea and neighbor-

ing areas of higher lead fractions. This allows the inference

that the MAX1 detects no leads over the open ocean. For this

reason the lead fraction of grid cells at the very ice edge is

likely to be underestimated, relative to the ice-covered part

of the cell.

While the AMSR-E lead fraction drops relatively consis-

tently down to values around 2–3 % within a belt of around

200 km from the ice edge, CS-2-based estimates show much

higher values of around 12 % in these areas. The high values

in the marginal ice zone are reasonable as this area is likely to

be fractured due to the influence of ocean waves. Especially

in the Baffin Bay, the northern Barents Sea and the Kara Sea,

high rates of new ice formation can occur in winter which is

in good agreement with high CS-2 lead fractions of these re-

gions. The general reasonable distribution and its alternation

enhance our confidence in the CS-2 lead detection algorithm.

4.5 Apparent lead width

Compared to the power law, the found number of apparent

lead width of 300 m is smaller than expected. This is a typi-

cal feature of the lower bound of the resolution as leads of

this size are not always covered by a single measurement

but partially by more, not necessarily leading to a detection.

This is intensified by the elongated footprint of CS-2 as small

leads may only be detected if they cover most of the width of

the footprint. The MAX1 is optimized mainly on leads wider

than a single measurement which could also cause the rela-

tive small number of apparent lead width of 300 m. Therefore

it is likely that the bend on the lower bound of the distribu-

tion in Fig. 10 is an artifact and not a valid part of the lead

distribution.

Marcq and Weiss (2012) have found a power-law exponent

similar to ours, between 2.1 and 2.6 for scales from 20 m to

2 km, by analyzing a single SPOT image with a resolution

of 10 m. In two submarine-based surveys, power laws with

exponents of 2 and 2.29 were found for the regions from
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the Fram Strait to the North Pole and the Davis Strait, re-

spectively (Wadhams, 1981; Wadhams et al., 1985). In both

cases, resolutions of about 5 m are present and the power law

holds for the range from 50 to 1000 m. The examination of

submarine and mooring data by Kwok et al. (2009) also indi-

cates a strong accumulation of lead widths down to 5 m but

the distribution has not been analyzed. For the central Arctic,

a study of Lindsay and Rothrock (1995) also states a power-

law distribution, but with a mean exponent of 1.6 for scales

from 1 to around 50 km. It is based on thermal to near-visible

infrared measurements from the AVHRR, which is, despite

its resolution of 1 km, expected to detect leads with a mini-

mum width below this size. It has been discussed whether the

lead width distribution might be scale-dependent (Lindsay

and Rothrock, 1995; Marcq and Weiss, 2012) which seems

not to be the case, as we found a stable power-law behavior

on scales partly covering those of all other studies.

The results of Lindsay and Rothrock (1995) are contradic-

tory to ours as we found a higher power-law exponent, imply-

ing a higher fraction of narrow leads. One explanation would

be the relative coarse resolution of the AVHRR in combina-

tion with its high sensitivity to leads. This could cause leads

to appear wider then they are, as well as several narrow ones

to appear as one wide lead, resulting in a less steep apparent

lead width distribution. Comparisons with MODIS images

indicate that the classifier used in this study switches in some

cases between lead and ice detections over refrozen leads.

This could result in an overestimation of the power-low ex-

ponent. The estimates might also have a different tolerance

of refrozen leads, while both include at least the early stages

of freezing. The size of leads often grows with time as the

surrounding ice floes keep drifting apart, meaning that esti-

mates which include older leads are also likely to show less

steep apparent lead width distributions.

Another reason could be an actual shift in the distribution

between the periods from 1989 to 1995 and 2011 to 2014.

This would be consistent with the results of Marcq and Weiss

(2012) but would not explain the differences to those stud-

ies by Wadhams (1981) and Wadhams et al. (1985). How-

ever, this shift could be driven by observed changes in the

amount of perennial ice, the ice thickness and drifting veloc-

ities (Nghiem et al., 2007; Haas et al., 2008; Rampal et al.,

2009). Rampal et al. further link an increase found in win-

ter strain rates between 1978 and 2007 to a weakening in

mechanical strength of the ice and increased fracturing. We

found no sign for a trend of the power-law exponent within

the 4 years of CS-2 data.

4.6 Implications of apparent lead width distribution

As most leads are not crossed orthogonally, the apparent lead

width is typically larger than the actual width of the lead.

A transformation to the latter is not possible without pro-

found knowledge of the sensitivity of lead detections and

it requires assumptions about the shape and orientation of

leads. This is impeded by a nonuniform distribution of lead

orientation (Bröhan and Kaleschke, 2014). For most applica-

tions it is not necessary to perform this transformation as this

is the way leads appear to anything moving along sea ice,

including the wind acting on the ocean surface.

The apparent lead width distribution shows a strong inten-

sification towards smaller lead widths. The area contribution

of leads with the width z is z ·p(z)∝ z−2.47+1, which still

decreases relatively fast with increasing width. This indicates

that every lead area estimate which is not capable of detect-

ing narrow leads is very likely to underestimate the total lead

area. For a parametrization of lead area estimates it is of high

interest to know down to which bound the power-law behav-

ior holds. This defines not only the mean lead width but also

the fraction of lead area which is not captured by the esti-

mate.

5 Conclusions

This study presented the potentials of several parameters

and combinations of them to distinguish CryoSat-2 measure-

ments from leads and those from ice. They have been tested

by deriving thresholds and analyzing their capabilities of re-

producing a prior classification. The combination of param-

eters, even though common practice, has not shown any ad-

vantage for threshold-based classifications. Using the max-

imum value of the waveform has in all cases shown better

results than any other tested parameter, including the pulse

peakiness. Compared to the classifier used by Laxon et al.

(2013), a threshold of 2.58× 10−11 W on the MAX detected

only 68 instead of 83 % of ensured lead measurements but

showed a much more stable SSH estimate by reducing the

amount of ice being detected as lead and/or off-nadir leads.

A solid lead detection, which ensures that nearly all lead clas-

sifications actually originate from leads, facilitates a precise,

unbiased freeboard retrieval. It thereby helps to improve ice

thickness estimates, which is one of the major aims of the

CryoSat-2 mission.

The threshold of 2.58× 10−11 W was further used as the

best representation of the overall lead occurrence. It showed

reasonable spatial distributions with relatively high lead frac-

tions of around 12 % in the marginal ice zone. This data set

has been made available at http://icdc.zmaw.de/. The appar-

ent lead width was derived from the number of consecutive

lead detections. Its distributions follow a power law with ex-

ponent of 2.47 ± 0.04 which implies a concentration of both

amount and area contribution at small lead widths. Embed-

ding this work into those of others, a scale-independent lead

width distribution from 20 m to 50 km is likely. The impli-

cations for a parametrization of low-resolution lead area esti-

mates were addressed and its dependency on the lower bound

of the distribution found was emphasized. The turbulent heat

transport over ice-covered regions is known to be strongly

lead width-dependent on small scales. The distribution found
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suggests that the work of Marcq and Weiss (2012), based

on a single SPOT scene, can be generalized. This implies

a much higher heat transport per lead area than that which

would be obtained by wide leads. In this manner the pre-

sented findings can help to improve the parametrization of

this fundamental process in coupled ocean–ice–atmosphere

models.

The Supplement related to this article is available online

at doi:10.5194/tc-9-1955-2015-supplement.
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