Articles | Volume 8, issue 5
https://doi.org/10.5194/tc-8-1711-2014
https://doi.org/10.5194/tc-8-1711-2014
Research article
 | 
17 Sep 2014
Research article |  | 17 Sep 2014

Present and future variations in Antarctic firn air content

S. R. M. Ligtenberg, P. Kuipers Munneke, and M. R. van den Broeke

Related authors

The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020,https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Antarctic ice shelf thickness change from multimission lidar mapping
Tyler C. Sutterley, Thorsten Markus, Thomas A. Neumann, Michiel van den Broeke, J. Melchior van Wessem, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 1801–1817, https://doi.org/10.5194/tc-13-1801-2019,https://doi.org/10.5194/tc-13-1801-2019, 2019
Short summary
Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry
Ludwig Schröder, Martin Horwath, Reinhard Dietrich, Veit Helm, Michiel R. van den Broeke, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019,https://doi.org/10.5194/tc-13-427-2019, 2019
Short summary
Brief communication: widespread potential for seawater infiltration on Antarctic ice shelves
Sue Cook, Benjamin K. Galton-Fenzi, Stefan R. M. Ligtenberg, and Richard Coleman
The Cryosphere, 12, 3853–3859, https://doi.org/10.5194/tc-12-3853-2018,https://doi.org/10.5194/tc-12-3853-2018, 2018
Short summary
Brief communication: Improved simulation of the present-day Greenland firn layer (1960–2016)
Stefan R. M. Ligtenberg, Peter Kuipers Munneke, Brice P. Y. Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 1643–1649, https://doi.org/10.5194/tc-12-1643-2018,https://doi.org/10.5194/tc-12-1643-2018, 2018
Short summary

Related subject area

Antarctic
Surface processes and drivers of the snow water stable isotopic composition at Dome C, East Antarctica – a multi-dataset and modelling analysis
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
The Cryosphere, 19, 173–200, https://doi.org/10.5194/tc-19-173-2025,https://doi.org/10.5194/tc-19-173-2025, 2025
Short summary
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Francesca Baldacchino, Nicholas R. Golledge, Mathieu Morlighem, Huw Horgan, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
The Cryosphere, 19, 107–127, https://doi.org/10.5194/tc-19-107-2025,https://doi.org/10.5194/tc-19-107-2025, 2025
Short summary
A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
The Cryosphere, 18, 5887–5911, https://doi.org/10.5194/tc-18-5887-2024,https://doi.org/10.5194/tc-18-5887-2024, 2024
Short summary
Dual-frequency radar observations of snowmelt processes on Antarctic perennial sea ice by CFOSCAT and ASCAT
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
The Cryosphere, 18, 5769–5788, https://doi.org/10.5194/tc-18-5769-2024,https://doi.org/10.5194/tc-18-5769-2024, 2024
Short summary
Brief communication: New perspectives on the skill of modelled sea ice trends in light of recent Antarctic sea ice loss
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024,https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary

Cited articles

Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, https://doi.org/10.1029/2009JF001306, 2010.
Barnola, J.-M., Pimienta, P., Raynaud, D., and Korotkevich, Y. S.: CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating, Tellus, 43B, 83–90, https://doi.org/10.1034/j.1600-0889.1991.t01-1-00002.x, 1991.
Bromwich, D. H., Nicolas, J. P., and Monaghan, A. J.: An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses, J. Climate, 24, 4189–4209, https://doi.org/10.1175/2011JCLI4074.1, 2011.
Das, I., Bell, R. E., Scambos, T. A., Wolovick, M., Creyts, T. T., Studinger, M., Frearson, N., Nicolas, J. P., Lenaerts, J. T. M., and van den Broeke, M. R.: Influence of persistent wind-scour on surface mass balance of Antarctica, Nat. Geosci., 6, 367–371, https://doi.org/10.1038/ngeo1766, 2013.
Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M., and Hanna, E.: Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise, Science, 308, 1898–1901, https://doi.org/10.1126/science.1110662, 2005.
Download