Articles | Volume 18, issue 12
https://doi.org/10.5194/tc-18-5673-2024
https://doi.org/10.5194/tc-18-5673-2024
Research article
 | 
06 Dec 2024
Research article |  | 06 Dec 2024

Impacts of differing melt regimes on satellite radar waveforms and elevation retrievals

Alexander C. Ronan, Robert L. Hawley, and Jonathan W. Chipman

Related authors

A low-cost, autonomous system for distributed snow depth measurements on sea ice
Ian A. Raphael, Donald K. Perovich, Christopher M. Polashenski, and Robert L. Hawley
EGUsphere, https://doi.org/10.5194/egusphere-2025-187,https://doi.org/10.5194/egusphere-2025-187, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Spatio-Temporal Patterns of Accumulation and Surface Roughness in Interior Greenland with a GNSS-IR Network
Derek James Pickell, Robert Lyman Hawley, and Adam LeWinter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2898,https://doi.org/10.5194/egusphere-2024-2898, 2024
Short summary
A cold laboratory hyperspectral imaging system to map grain size and ice layer distributions in firn cores
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024,https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Incorporating moisture content in surface energy balance modeling of a debris-covered glacier
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020,https://doi.org/10.5194/tc-14-1555-2020, 2020
Short summary
A model for French-press experiments of dry snow compaction
Colin R. Meyer, Kaitlin M. Keegan, Ian Baker, and Robert L. Hawley
The Cryosphere, 14, 1449–1458, https://doi.org/10.5194/tc-14-1449-2020,https://doi.org/10.5194/tc-14-1449-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Ice speed of a Greenlandic tidewater glacier modulated by tide, melt, and rain
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
The Cryosphere, 19, 525–540, https://doi.org/10.5194/tc-19-525-2025,https://doi.org/10.5194/tc-19-525-2025, 2025
Short summary
A topographically controlled tipping point for complete Greenland ice sheet melt
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025,https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet
Nils Bochow, Anna Poltronieri, and Niklas Boers
The Cryosphere, 18, 5825–5863, https://doi.org/10.5194/tc-18-5825-2024,https://doi.org/10.5194/tc-18-5825-2024, 2024
Short summary
The future of Upernavik Isstrøm through the ISMIP6 framework: sensitivity analysis and Bayesian calibration of ensemble prediction
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024,https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary
Firn seismic anisotropy in the Northeast Greenland Ice Stream from ambient-noise surface waves
Emma Pearce, Dimitri Zigone, Coen Hofstede, Andreas Fichtner, Joachim Rimpot, Sune Olander Rasmussen, Johannes Freitag, and Olaf Eisen
The Cryosphere, 18, 4917–4932, https://doi.org/10.5194/tc-18-4917-2024,https://doi.org/10.5194/tc-18-4917-2024, 2024
Short summary

Cited articles

Amarouche, L., Thibaut P., Zanife, O. Z., Dumont, J.-P., Vincent, P., and Steunou, N.: Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects, Mar. Geod., 27, 171–197, 2004. 
Ashcraft, I. S. and Long, D. G.: Observation and Characterization of Radar Backscatter over Greenland, IEEE T. Geosci. Remote, 43, 225–237, https://doi.org/10.1109/TGRS.2004.841484, 2005. 
Benson, C. S.: Stratigraphic Studies in the Snow and Firn of the Greenland Ice Sheet, Snow Ice and Permafrost Research Establishment, Corps of Engineers, U. S. Army, Wilmette, Illinois, https://apps.dtic.mil/sti/citations/ADA337542 (last access: April 2023), 1996. 
Brown, G. S.: The Average Impulse Response of a Rough Surface and Its Applications, IEEE J. Oceanic Eng., 2, 67–74, https://doi.org/10.1109/JOE.1977.1145328, 1977. 
Cuffey, K. M. and Marshall, S. J.: Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet, Nature, 404, 591–594, https://doi.org/10.1038/35007053, 2000. 
Download
Short summary
We generate a 2010–2021 time series of CryoSat-2 waveform shape metrics on the Greenland Ice Sheet, and we compare it to CryoSat-2 elevation data to investigate the reliability of two algorithms used to derive elevations from the SIRAL radar altimeter. Retracked elevations are found to depend on a waveform's leading-edge width in the dry-snow zone. The study indicates that retracking algorithms must consider significant climate events and snow conditions when assessing elevation change.
Share