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Abstract. Geodetic surface mass balance calculations rely
on satellite radar altimeters such as CryoSat-2 to understand
elevation and volumetric changes of the Greenland Ice Sheet
(GrIS). However, the impact of varying GrIS shallow sub-
surface stratigraphic conditions on level 2 CryoSat-2 eleva-
tion products is poorly understood. We investigate the reli-
ability of the Offset Center Of Gravity (OCOG) and Uni-
versity College London Land-Ice (ULI) elevation retracking
algorithms through the analysis of (and comparison with)
level 1B waveform-derived leading-edge width (LeW). We
generate a 2010 to 2021 LeW time series using temporal
clustering and Bayesian model averaging, and we compare
them with level 2 OCOG and ULI elevation time series. We
perform this workflow at Summit Station, North Greenland
Eemian Ice Drilling (NEEM) Camp, and Raven Camp, cho-
sen to represent the upper and lower bounds of the dry-snow
zone and percolation zone. We note that melting event, snow-
pack recovery, and potentially anomalous snow accumula-
tion and high-speed wind signatures are evident in Summit
Station’s LeW time series. We find that level 1B LeW has
a significant inverse relationship with the ULI level 2 eleva-
tions at NEEM Camp and Summit Station and likely with
the entire dry-snow zone. The ULI retracked level 2 eleva-
tions at Raven Camp (and likely the entire percolation zone)
have no clear elevation bias associated with significant melt
events. The OCOG retracked level 2 elevations showed no
significant association with LeW at any site. Future work is
needed to understand the impacts of GrIS high-speed wind
events and snow accumulation on elevation products.

1 Introduction

1.1 Climatological significance

The Greenland Ice Sheet (GrIS) contains 6–7 m of global
sea-rise equivalent of ice (Cuffey and Marshall, 2000) and
is predicted to contribute between 30–170 mm to sea-level
rise by 2100 (Shepherd et al., 2019). GrIS elevation and
mass balance products need to be accurate, given its climato-
logical significance in the face of warming temperatures. A
valuable tool in developing such products is ESA’s CryoSat-
2 radar altimeter, SIRAL (Wingham et al., 2006). Unlike
NASA’s ICESat-2 laser elevation instrument ATLAS, SIRAL
can penetrate the GrIS shallow subsurface (Neumann et al.,
2019; Nilsson et al., 2015; Simonsen and Sørensen, 2017;
Vermeer et al., 2022). CryoSat-2 elevation retrievals can be
influenced by local and regional effects of surface melting
and snowpack processes, as noted around North Greenland
Eemian Drilling (NEEM) Camp (or simply NEEM) from
2011 to 2014 (Nilsson et al., 2015). However, the impact of
melt on radar waveforms and thus surface elevation retrievals
is not uniform across the ice sheet.

As anthropogenic climate change accelerates GrIS surface
melt (Sellevold and Vizcaíno, 2020) and increases interan-
nual variability in surface mass balance (Fyke et al., 2014),
melt-induced CryoSat-2-derived elevation biases are likely
to increase in significance. Therefore, the relationship be-
tween these elevation biases and changing shallow subsur-
face GrIS dynamics needs to be fully understood. Here, we
analyze changes in the shallow subsurface and their influence
on retracked elevations from 2010–2021 in the dry-snow and
percolation zones (Benson, 1996; Nghiem et al., 2001, 2012;
Polashenski et al., 2014; Rizzoli et al., 2017).
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Figure 1. Idealized CryoSat-2 radar waveform (modified from Si-
monsen and Sørensen, 2017). The leading-edge width (LeW) is de-
fined as the time or distance it takes for the returning radar wave-
form to reach peak amplitude from baseline, and the leading-edge
slope (LeS) is defined as the slope of the waveform during the bins
corresponding to the LeW. LeW and LeS have an inverse relation-
ship when the waveform’s peak amplitude remains constant.

1.2 Retrackers

Researchers can choose from two land–ice retracking al-
gorithms when deriving elevations from SIRAL waveforms
(Fig. 1) within the GrIS low-resolution-mode (LRM) zone:
Offset Center of Gravity (OCOG) and University College
London Land-Ice (ULI) elevation (European Space Agency,
2019a, b).

1.2.1 OCOG retracker

The OCOG algorithm is an empirical threshold retracker
which locates the leading-edge (LE) of a waveform based
on the shape of the overall waveform. The OCOG retracker
first calculates the amplitude of the waveform (Eq. 1; Euro-
pean Space Agency, 2019a), where8(i) is the corresponding
power at bin n1 to n2.

AOCOG =

√√√√∑n2
i=n1

84(i)∑n2
i=n1

82(i)
(1)

The OCOG retracker then locates the range bin iOCOG (and
therefore the derived range) of the corresponding retracked
point to when the power crosses an empirically derived
threshold of amplitude A. The SIRAL instrument uses a
threshold of 30 % (European Space Agency, 2019a).

1.2.2 ULI retracker

Although the OCOG retracker empirically relies on the over-
all shape of the observed waveform to derive a retracked
position, the ULI retracker applies parametric model fitting
to the initial OCOG retracker to estimate ranges (European

Space Agency, 2019a). The ULI specifically fits a Brown
model (Brown, 1977) adapted to the CryoSat-2 instrument
(European Space Agency, 2019b). The ULI retracker used in
SIRAL determines the retracked point by multiplying the fit-
ted model’s peak power located at the end of the LE by an
empirically derived threshold.

The ULI retracker’s smoothed Brown model (Fig. 2, with
the subtraction of the added noise term) is defined as am-
plitude A multiplied by wave w (Eq. 2; European Space
Agency, 2019a).

M(t)Brown = A ·w(t) (2)

AmplitudeA (Eq. 3; European Space Agency, 2019a) con-
tains PT (peak transmitted power; European Space Agency,
2019a), K1 (first-order approximation of the mispointing an-
gle handling term, Eq. 4), ξ (mispointing angle), γ (antenna
beamwidth parameter, Eq. 5), σ (standard deviation of the
point response (σP) and significant wave height (SWH) (σH)
function, Eq. 6), and T (time constant, Eq. 7; European Space
Agency, 2019a).

A= PTT exp
[
−4
γ

sin2ξ

]
exp

[
(k1σ)

2

2

]
(3)

The first-order approximation of the mispointing angle
term (Eq. 4) contains ξ , c (speed of light), and h (estimated
height of the SIRAL instrument above mean sea level (MSL)
subtracted by the determined range accounting for any bias;
European Space Agency, 2019a).

k1 =
4c
γ h

[
cos(2ξ)−

1
γ

sin2(2ξ)
]

(4)

γ (Eq. 7) contains 2Major and 2Minor: the along-
and across-antenna beamwidths (European Space Agency,
2019a).

γ =

(
2

ln(2)

)
sin2

 2[
1

2Major
+

1
2Minor

]
/2

 , (5)

σ =
√
(σP)2+ (σH)2, (6)

T = σP
√

2π. (7)

σP (Eq. 8; MacArthur, 1978, as cited in Amarouche et al.,
2004) includes PL (compressed pulse length), and σH (Eq. 9;
Stewart, 1985, as cited in Garcia et al., 2014) includes SWH
and c.

σP ∼= 0.513PL, (8)

σH =
SWH

2c
. (9)

First-order approximation of waveform w1 (Eq. 10) in-
cludes the addition of t (time subtracted from the wave
epoch; European Space Agency, 2019a).

w1(t,k1)=
1
2

exp[−k1(t)]

{
1+ erf

[
(t)

σ
√

2
−
k1σ
√

2

]}
(10)
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Figure 2. Smoothed Brown waveforms (Eqs. 2–11; European
Space Agency, 2019a) with different significant wave height (SWH)
values. PL = 3.125 ns, PT = 25 W, 2Major = 1.060°, 2Minor =
1.992° (European Space Agency, 2019b), h= 3246.6 m (Hawley et
al., 2020), and ξ = 0.1° (University College London, 2024). There
is an inverse relationship between LeW and LeS and a positive re-
lationship between LeW and SWH, highlighting that the Brown
model is a function of the LeW.

SWH in the ULI retracker’s Brown model is inversely re-
lated to the LeS and positively related to the LeW (Fig. 2;
Brown, 1977; Hayne, 1980; Schlembach et al., 2020). As
such, we rewrite σH (Eq. 9) to show the Brown model as a
function of the LeW (Eq. 11).

σH =
f (LeW)

2c
(11)

1.2.3 Effect of non-constant LeW on retracker
performance

It has been shown that the 2012 melting event created a
level 2 elevation bias of 89± 49 cm at NEEM by artificially
decreasing the waveform’s LeW and radar penetration depth
following the creation of a more specular melt layer (Nilsson
et al., 2015). While a large-scale melting event decreased the
surface roughness within the altimeter’s footprint (Nilsson et
al., 2015) and surface roughness is a contributor to the LeW
(Ashcraft and Long, 2005; Legrésy and Rémy, 1997), it was
not found to be a potential long-lasting cause of elevation
bias (Nilsson et al., 2015).

These results indicate that retrackers are not immune to
melt-induced changes within the shallow subsurface, raising
questions about the long-term performance of the CryoSat-
2 level 2 OCOG and ULI LRM retrackers, given that the
LRM zone does not contain a monolithic melt regime (Ben-
son, 1996; Nghiem et al., 2001, 2012; Polashenski et al.,
2014; Rizzoli et al., 2017). While the choice of retracker may

seem inconsequential, ULI’s Brown model reliance on LeW
(Sect. 1.2.2), which itself can change based on the surface
conditions of the targeted surface (Ashcraft and Long, 2005;
Legrésy and Rémy, 1997; Nghiem et al., 2001; Nilsson et
al., 2015; Simonsen and Sørensen, 2017), may cause ele-
vation inconsistencies if applied uniformly across different
melt regimes. This study addresses these resulting questions
through the creation of a framework to calculate and evaluate
level 1B baseline D LeW and level 2 elevation time series at
any given location on the GrIS within CryoSat-2’s LRM zone
(Ronan et al., 2024), and we hypothesize that the OCOG re-
tracker should generate a truer elevation trend regardless of
shallow GrIS subsurface changes, given its relative indepen-
dence from the waveform’s LeW (Sect. 1.2.1; Ferraro and
Swift, 1995).

2 Methodology

This study applies the aforementioned framework (Ronan et
al., 2024) for NEEM and Summit Station (or simply Summit)
in the dry-snow zone and Raven Camp (or simply Raven) in
the percolation zone (Fig. 3; Benson, 1996; Nghiem et al.,
2001, 2012; Polashenski et al., 2014; Rizzoli et al., 2017).
These well-studied locations were chosen to investigate re-
tracker performance and waveform characteristics within dif-
ferent melt regimes.

2.1 Defining a region of interest

The framework begins by ingesting level 1B waveforms col-
lected within a predesignated radius for each location, as-
suming homogeneity within the shallow subsurface. Unlike
the decision to use a 25 km buffer around NEEM in Nils-
son et al. (2015), this study uses a buffer with a radius of
20 km around each study site to estimate level 1B metrics
and level 2 elevations.

2.2 Data preparation

2.2.1 Level 2 elevations

Assuming that the true elevation is not constant throughout
the 20 km circular buffer area (Helm et al., 2014) and that
none of the CryoSat-2 tracks directly overlap the field site,
we employ a least-squares-fit algorithm to generate a 3D
elevation plane (ZSurface = C1X+C2Y +C0) for any given
month; then we predict the elevation of the specified site
along with its 95 % confidence interval (CI). This value and
the average date of all points used are included in the level 2
elevation time series. A 1-month aggregation period is used
to allow for a robust multiple linear regression (MLR).

https://doi.org/10.5194/tc-18-5673-2024 The Cryosphere, 18, 5673–5683, 2024
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Figure 3. Study sites, elevation (Howat et al., 2015), and mean annual snowmelt (Noël et al., 2019) within the LRM boundary. Raven (located
within the percolation zone) experiences 3 orders of magnitude more melt than Summit (located within the dry-snow zone) and 2 orders of
magnitude more melt than NEEM (located within the dry-snow zone) (Noël et al., 2019). Mean annual snowmelt is derived from 1958 to
2019 RACMO2.3p2 time series (Noël et al., 2019).

2.2.2 Level 1B LeW

All level 1B waveforms are clipped to remove remnants
of the preceding waveform, and range bins are converted
to range (m) (European Space Agency, 2019b), centralized
around the beginning of the LE. To estimate the location of
the true peak and minimize the interference of inconsisten-
cies within the waveform itself, the waveform is smoothed
using a Savitzky–Golay filter (we empirically chose the pa-
rameters of window length (17) and order (second)). This
study defines the waveform’s LeW as the resulting range (m)
of the smoothed peak (Fig. 4).

As individual level 1B LeW values corresponding to re-
turning waveforms within a 20 km buffer are assumed to be
consistent (Sect. 2.1), we employ a simple metric average of

values within the radius to create a time series. Points that fall
within a calendar week of each other are aggregated and av-
eraged. This resulting averaged LeW and the averaged date
of all points used are included in the level 1B metric time
series. A 1 calendar week aggregation period for the LeW
is used instead of the month used for the level 2 elevations
as there is no need to maximize the number of tracks for an
additional MLR step (Sect. 2.2.1).

2.3 Trend analysis and comparison

We employ the Bayesian Estimator for Abrupt Seasonality
and Trend (BEAST) algorithm (Zhao et al., 2019) to derive
trends within the mean clustered level 1B LeWs and level 2
elevation time series and to serve as a visual aid in analy-
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Figure 4. Visual representation of the LeW methodology. A
Savitzky–Golay filter (window length of 17 and second-order ap-
proximation) is applied to the waveform, and the range of the re-
sulting peak is defined as the LeW.

sis. The temporal resolution of the time series proves difficult
when analyzing the possible impact from glaciologically sig-
nificant processes; GrIS melting events occur in the span of
days (Nghiem et al., 2012), whereas the clustered time se-
ries have a data point approximately every month (even in
the case of level 1B LeW, with a weekly clustering period).
This low temporal resolution and irregularity makes the de-
cision to use certain trend-calculating models challenging,
which the BEAST algorithm avoids by using Bayesian infer-
ence and model averaging (Zhao et al., 2013, 2019). We used
a window length of 1/8 of a year with the BEAST algorithm,
which is a compromise between the ability to resolve sea-
sonal trends and the unintentional introduction of artifacts.

To account for the difference in aggregation period be-
tween level 1B LeW (weekly) and level 2 elevations
(monthly) (Sects. 2.2.1 and 2.2.2) and to allow for separate
correlation analyses between the two time series, level 1 LeW
values are interpolated in time to the same dates as the clus-
tered level 2 elevations.

2.4 Outliers

Anomalous waveforms, defined as waveforms that signifi-
cantly deviate from ideal (Fig. 1), were removed before the
clustering phase (Sect. 2.2.2; Sect. 1 in the Supplement). In
the case of Summit and Raven, a cluster outlier was removed
from the level 2 elevation time series for containing eleva-
tions greater than or equal to 6 standard deviations from
the mean of the remaining clusters in the time series. We
note that the methodology used to filter outlier waveforms
relies on an empirical understanding of ideal radar wave-
forms and simple thresholding rather than a deterministic al-
gorithm. Given the wide variety of level 1B LEs and its un-
derlying characteristics, more research is needed to develop

Table 1. Outliers removed during the analytical process.

Summit NEEM Raven

Detected outlier waveforms 1111 580 8191
Waveforms analyzed 37 152 53 593 26 893
Detected outlier waveforms (%) 2.99 1.08 30.46

a more encompassing methodology. The numbers of anoma-
lous waveforms detected at Summit and NEEM are small
in comparison to the total number of waveforms within the
20 km buffer throughout the entire temporal range (Table 1).
At Raven, however, we detect> 30 % of the total waveforms
as anomalous.

Raven’s high percentage of outliers can be attributed to its
large LeW and to its increased likelihood of erroneously in-
cluding a second waveform before being clipped. The likely
explanation of Raven’s increased LeW is grounded in the fact
that Raven is in a melt-dominated glaciological regime (Ben-
son, 1996; Noël et al., 2019). An increased amount of accu-
mulation in southwest Greenland (Noël et al., 2019) paired
with more melt periods per season can potentially create
many subsurface ice layers in the snowpack, also resulting
in a higher LeW (see Sect. 4.2.2 for more information).

3 Results

3.1 NEEM Camp

LeW at NEEM increases negligibly from 2010.62 to 2012.5
(decimal year) by 1.99 % (6.97 to 7.12 m) (Fig. 5a). From
2012.5 to 2012.62, the LeW abruptly decreased by 46.6 % to
4.43 m, and then it steadily increased back to 6.20 m (33.4 %)
and slightly decreases again to 5.67 m (−9 %) in 2012.62
(Fig. 5a). The LeW at NEEM is inversely related to ULI re-
tracked level 2 elevations (two-tailed test (TTT), α = 0.05,
r =−0.53, p < 0.0001) (Fig. 5a and b) and not significantly
correlated with the OCOG retracked level 2 elevations (TTT,
α = 0.05, r = 0.03, p = 0.81084) (Fig. 5a and c). It is noted
that the elevation derived from the OCOG retracker at NEEM
is, on average, ∼ 1 m higher than corresponding elevations
from the ULI retracker (Fig. 5b and c).

3.2 Summit Station

From 2012.38 to 2012.5, the LeW abruptly decreased by
49.2 % to 5.15 m, and then it steadily increased to 8.36 m in
2018.99 (Fig. 6a). The LeW ultimately decreased down to
7.22 m in 2019.58 (−15.8 %) and recovered back to 7.92 m
in 2021.62 (Fig. 6a). ULI retracked elevation trends contain
an abrupt increase in July 2012, followed by a linear de-
crease in elevation until approx. 2018. LeW at Summit in-
creased from 2010.5 to 2012.38 by 36.1 % (5.91 to 8.52 m)
(Fig. 6a). The LeW at Summit Station is inversely related to

https://doi.org/10.5194/tc-18-5673-2024 The Cryosphere, 18, 5673–5683, 2024
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Figure 5. (a) Level 1B LeW, (b) ULI level 2, and (c) OCOG retracked elevations at NEEM. The LeW at NEEM is inversely related
to ULI retracked level 2 elevations (TTT, α = 0.05, r =−0.53, p < 0.0001) (a, b) and not significantly correlated to the OCOG retracked
level 2 elevations (TTT, α = 0.05, r = 0.03, p = 0.81084) (a, c). OCOG-derived elevations are, on average,∼ 1 m higher than corresponding
elevations from the ULI retracker (b, c).

ULI retracked level 2 elevations (TTT, α = 0.05, r =−0.71,
p < 0.0001) (Fig. 6a and b) and not significantly correlated
to the OCOG retracked level 2 elevations (TTT, α = 0.05,
r =−0.06, p = 0.59046) (Fig. 6a and c). It is noted that the
elevation derived from the OCOG retracker at Summit Sta-
tion is, on average, ∼ 2 m higher than corresponding eleva-
tions from the ULI retracker (Fig. 6b and c).

3.3 Raven Camp

Unlike NEEM Camp and Summit Station, where there are
significant changes in LeW over time (Figs. 5a and 6a), the
LeW time series at Raven Camp remains constant (Fig. 7a).
We note that the average LeW at Raven is a full 2 m wider
than the largest LeW cluster at Summit (Figs. 6a and 7a;
see Sect. 4.2.2 for more information). In addition, the LeW
time series from Summit and NEEM show a single, large,
and abrupt LeW decrease during the July 2012 melt event
(Figs. 5a and 6a), but no such abrupt change is found in
the corresponding LeW time series at Raven Camp (Fig. 7a)
Finally, the elevation estimates from the two retrackers at
Raven Camp follow a different pattern than at Summit Sta-
tion: the variability of elevations derived from the ULI re-
tracker is comparable to that of OCOG, and their means are
comparable to each other (Fig. 7b and c). Unlike at Sum-
mit (Fig. 6b), the ULI retracker shows no significant trends
during the study period (Fig. 7b) or noticeable bias associ-
ated with the LeW (TTT, α = 0.05, r =−0.02, p = 0.82634)
(Fig. 7b and c). The OCOG retracker behaves the same as at

Summit, with no noticeable bias associated with the LeW
(TTT, α = 0.05, r =−0.071, p = 0.48564) (Fig. 7a and c).

4 Discussion

4.1 Dry-snow zone elevations

This study asserts that large changes in dry-snow zone level 2
ULI elevations are artifacts of a changing LeW, which in
turn are caused by inter- and intra-seasonal changes in the
shallow subsurface. Previous research has demonstrated that
when corrected for downslope advection and seasonal vari-
ations, the surface elevation from at least 2008 to 2018 at
Summit Station increased at an average rate of 0.019 ma−1

(p� 0.001) (Hawley et al., 2020). Given this near-constant
trend at Summit Station and concurrence with Nilsson et al.
(2015), the ∼ 2 m elevation variation calculated in this study
using the ULI elevations at NEEM and Summit (Figs. 5b
and 6b) is unlikely to represent actual elevation change and is
likely an artifact of the waveform’s changing LeW. Kuipers
Munneke et al. (2015) corroborate this conclusion as they
indicate that the range of surface elevation change within
the time frame is 1 order of magnitude smaller than the
elevation changes indicated by the ULI retracker. Unlike
OCOG-derived elevations, which remain statistically uncor-
related with the LeW at NEEM and Summit Station (Figs. 5c
and 6c), ULI-derived elevations are found to have an in-
verse relationship with the LeW (Figs. 5b and 6b; Sects. 3.1
and 3.2).

The Cryosphere, 18, 5673–5683, 2024 https://doi.org/10.5194/tc-18-5673-2024
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Figure 6. (a) Level 1B LeW, (b) ULI level 2, and (c) OCOG retracked elevations at Summit Station. The LeW is inversely related to ULI
retracked level 2 elevations (TTT, α = 0.05, r =−0.71, p < 0.0001) (a, b) and not significantly correlated to the OCOG retracked level 2
elevations (TTT, α = 0.05, r =−0.06, p = 0.59046) (a, c). OCOG-derived elevations are, on average, ∼ 2 m higher than corresponding
elevations from the ULI retracker (b, c). One outlier cluster (13 September 2010) was removed from the level 2 elevation time series (b, c).

Figure 7. (a) Level 1B LeW, (b) ULI level 2, and (c) OCOG retracked elevations at Raven Camp. The ULI retracker shows no significant
trends during the study period (c) or noticeable bias associated with the LeW (TTT, α = 0.05, r =−0.02, p = 0.82634) (b, c). OCOG-
derived elevations have no noticeable bias associated with the LeW (TTT, α = 0.05, r =−0.071, p = 0.48564) (a, c). One outlier cluster
(24 August 2021) was removed from the level 2 elevation time series (b, c).

Such a relationship can be explained through the inner me-
chanics of the ULI retracker itself; a decreased LeW will re-
sult in an increased LeS and decreased noise floor, which,
when ingested into the Brown model (Eqs. 2–11; Fig. 2),
will find a retracked point in the waveform earlier, which ul-
timately decreases the calculated time of flight of the radar

signal and results in an artificially high surface elevation.
Given the OCOG-derived elevations are∼ 1 m higher than in
the ULI algorithm at NEEM and Summit (Figs. 5a and 6a),
we assess that the OCOG behaves as a low-threshold re-
tracker (Fig. 8). The OCOG algorithm places the retracked
points earlier in the waveform, which results in a decreased

https://doi.org/10.5194/tc-18-5673-2024 The Cryosphere, 18, 5673–5683, 2024
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Figure 8. Plot containing representative waveforms within a 20 km radius of Summit Station (a) before and (b) after the 2012 melting event
(July 2012). Between these two waveforms where the LeW decreases from 12.18 m (a) to 3.75 m (b), the retracked elevation difference
between the OCOG and ULI retrackers 1(hOCOG−hULI) decreases from 1.21 m (a) to 0.50 m (b). Such waveforms serve as a visual
interpretation of how the OCOG retracked point remains earlier in the waveform than with the ULI retracker, indicating a higher hOCOG
(Figs. 5c and 6c). As the LeW decreases, hULI approaches hOCOG.

time of flight of the radar signal. As such, OCOG-derived
elevations escape most artifacts from a changing LeW that
hinder the ULI retracker (Figs. 5, 6, and 8).

4.2 LeW

4.2.1 Summit and NEEM

Consistent with Nilsson et al. (2015), we also note signif-
icant drops in the LeW at NEEM (−46.6 %) and Summit
(−49.2 %), corresponding to the July 2012 melting event. We
assert that an influx of refrozen meltwater during the 2012
melting event on the surface and in the immediate shallow
subsurface resulted in a more specular surface and reduction
in radar waveform penetration depth (Nilsson et al., 2015),
which significantly increased the surface-to-volume scatter-
ing ratio. Such a dramatic increase in this ratio results in a
sharp decrease in a waveform’s LeW. As the melting event
subsides and more climatologically average weather condi-
tions return, the LeW increases as the melt layer is buried,
and the surface-to-volume scattering ratio moves back to-
wards pre-melt values. We see that the LeW at Summit has
a higher recovery rate than NEEM, which can be explained
by Summit’s higher average snow accumulation rates (Noël
et al., 2019).

This study also notes a second abrupt decrease in LeW at
Summit in winter 2019 and NEEM in winter 2020, with no
reported melting event. This may be due to a period of ele-
vated surface wind speeds that, through wind packing, cre-
ated wind slabs and crusts (Sommer, 2018; Sommer et al.,
2018) and/or removed an upper layer of the loosely layered
snowpack. Wind slabs and crusts would result in a decreased
LeW through the same mechanism as the melting crust gen-
erated from the 2012 melting event.

4.2.2 Raven

Although NEEM and Summit within the dry-snow zone
experience shallow subsurface changes, resulting in LeW
changes and therefore changes in ULI-derived elevations, no
such processes are observed at Raven Camp. Raven experi-
ences 3 orders of magnitude more melt than at Summit and 2
orders of magnitude more melt per year than at NEEM (Noël
et al., 2019), and as such, Raven’s shallow subsurface con-
tains vastly more melt layers. We assess that these melt lay-
ers keep Raven’s LeW high (∼ 2 m higher in Raven than in
NEEM or Summit) through the decrease in penetration depth
and keep the volume to surface scattering ratio low. Such
a low ratio minimizes the effect of snow accumulation and
high-profile melt crusts (and perhaps wind slabs and crusts)
on the LeW signal.

Given the inverse relationship between the ULI trend and
LeW at Summit and NEEM (Figs. 5 and 6), the explanation
behind such a relationship (Eqs. 2–11; Fig. 2; Brown, 1977;
Hayne, 1980; Schlembach et al., 2020), and the constant ULI
trend at Raven (Fig. 7b), we are confident that our outlier
methodology (Sect. 2.4; Sect. S1 in the Supplement) does
not selectively produce an artificially flat LeW trend at Raven
(Fig. 7a).

5 Conclusion

We analyzed 10-year trends in level 2 OCOG and ULI
retracked GrIS surface elevations, as well as level 1B
LeW from 2010 to 2021. We assess that abrupt first-order
LeW changes within the dry-snow zone are a function of
large-scale melting events and perhaps wind-packing events,
whereas second-order trends are a function of snowpack re-
covery. We provide supporting evidence for the assertion by
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Nilsson et al. (2015) that climatological events impact el-
evations derived from CryoSat-2’s SIRAL instrument. We
find that the ULI retracker becomes biased within the dry-
snow zone during periods of intense melt, changing snow-
pack, and potential wind events. This is apparent in changes
in the level 1B LeW, which result in a changing position of
the retracked point in the Brown model. We find that there is
no noticeable ULI retracker bias within the percolation zone
during periods of intense melt, changing snowpack, or poten-
tial wind events.

The results from this study indicate that future satellite
radar altimeters covering the GrIS dry-snow zone must take
climatologically significant events (such as melting events,
potential high-speed wind events, or snow accumulation pat-
terns) into consideration when analyzing elevations derived
from model retracking algorithms. Our study also indicates
that empirically derived retrackers such as OCOG are prefer-
able across the GrIS LRM zone over their model retracking
counterpart, ULI.
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