Articles | Volume 18, issue 8
https://doi.org/10.5194/tc-18-3613-2024
https://doi.org/10.5194/tc-18-3613-2024
Research article
 | 
15 Aug 2024
Research article |  | 15 Aug 2024

A physics-based Antarctic melt detection technique: combining Advanced Microwave Scanning Radiometer 2, radiative-transfer modeling, and firn modeling

Marissa E. Dattler, Brooke Medley, and C. Max Stevens

Related authors

Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density
Eric Keenan, Nander Wever, Marissa Dattler, Jan T. M. Lenaerts, Brooke Medley, Peter Kuipers Munneke, and Carleen Reijmer
The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021,https://doi.org/10.5194/tc-15-1065-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
The effect of ice shelf rheology on shelf edge bending
W. Roger Buck
The Cryosphere, 18, 4165–4176, https://doi.org/10.5194/tc-18-4165-2024,https://doi.org/10.5194/tc-18-4165-2024, 2024
Short summary
Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024,https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Brief communication: Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland
Christoph Welling and The RNO-G Collaboration
The Cryosphere, 18, 3433–3437, https://doi.org/10.5194/tc-18-3433-2024,https://doi.org/10.5194/tc-18-3433-2024, 2024
Short summary
Widespread increase in discharge from west Antarctic Peninsula glaciers since 2018
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024,https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Surface dynamics and history of the calving cycle of Astrolabe Glacier (Adélie Coast, Antarctica) derived from satellite imagery
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
The Cryosphere, 18, 3067–3079, https://doi.org/10.5194/tc-18-3067-2024,https://doi.org/10.5194/tc-18-3067-2024, 2024
Short summary

Cited articles

Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. 
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change, 8, 1044–1052, https://doi.org/10.1038/s41558-018-0326-3, 2018. 
Berthier, E., Scambos, T. A., and Shuman, C. A.: Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002, Geophys. Res. Lett., 39, L13501, https://doi.org/10.1029/2012GL051755, 2012. 
Brent, R. P.: Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs, NJ, ISBN 0-13-022335-2, 1973. 
Brun, E.: Investigation on Wet-Snow Metamorphism in Respect of Liquid-Water Content, Ann. Glaciol., 13, 22–26, http://https://doi.org/10.3189/S0260305500007576, 1989. 
Download
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.