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Abstract. Surface melt on ice shelves has been linked to
hydrofracture and subsequent ice shelf breakup. Since the
1990s, scientists have been using microwave radiometers
to detect melt on ice shelves and ice sheets by applying
various statistical thresholding techniques to identify sig-
nificant increases in brightness temperature that are asso-
ciated with melt. In this study, instead of using a fixed
threshold, we force the Snow Microwave Radiative Trans-
fer model (SMRT) with outputs from the Community Firn
Model (CFM) to create a dynamic, physics-based threshold
for melt. In the process, we also combine our method with
statistical thresholding techniques and produce microwave
grain-size information. We run this “hybrid method” across
the Larsen C ice shelf as well as 13 sites on the Antarctic
Ice Sheet. Melt and non-melt days from the hybrid method
and three statistical thresholding techniques match with the
surface energy balance within 94± 1 %; the effect of melt
on the passive microwaves is mostly binary and thus largely
detectable by statistical thresholding techniques as well as
physics-based techniques. Rather than always replacing sta-
tistical thresholding techniques with the hybrid method, we
recommend using the hybrid method in studies where the
melt volume or grain size is of interest. In this study, we show
that the hybrid method can be used to (a) model dry-snow
brightness temperatures of Antarctic snow and (b) derive a
measure of grain size; therefore, it is an important step for-
wards towards using firn and radiative-transfer modeling to
quantify melt rather than to simply detect melt days.

1 Introduction

Studying Antarctic surface melt is critical for evaluating the
relationship between the Antarctic Ice Sheet (AIS) and the
climate system. Climate change has been associated with in-
creased surface melt and pond formation in Antarctica, par-
ticularly in the Antarctic Peninsula (Scambos et al., 2000).
While only a small percentage of surface meltwater runs off
into the ocean, recent studies have shown that meltwater on
the surface of ice shelves can lead to hydrofracture and ice
shelf collapse (Scambos et al., 2000; Banwell et al., 2013;
Kingslake et al., 2017; Bell et al., 2018). Since ice shelves
provide a buttressing effect to ice upstream, their collapse
can indirectly result in mass loss from the AIS through in-
creased ice discharge into the ocean, contributing to sea level
change (Rignot, 2004; Berthier et al., 2012).

To identify surface melt on the AIS from passive mi-
crowave radiometry, previous studies have used a variety
of statistical thresholding techniques that detect spikes in
brightness temperature above a predetermined threshold,
which are interpreted as melt events (Zwally and Fiegles,
1994; Torinesi et al., 2003; Picard et al., 2007). Typically, the
threshold remains temporally constant over a year or longer
and is based on the mean brightness temperature for the 18
to 19 GHz frequency in horizontal polarization. If the bright-
ness temperature exceeds this threshold on a given day, then
that day is assigned to be a melt day. However, variations in
brightness temperature can also occur due to changes in snow
density, physical temperature, and microstructure (Hofer and
Mätzler, 1980; Mote and Anderson, 1995).
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Fahnestock et al. (2002) and Johnson et al. (2020) partially
circumvent this issue by checking for a bimodal distribution
of brightness temperatures annually to determine the pres-
ence of melt. This technique can remove the effect of varia-
tions in annual wintertime temperature but does not account
for day-to-day variations in temperature and snow stratig-
raphy. Tedesco (2009) developed a physics-based threshold
for melt detection using the Microwave Emission Model for
Layered Snow (MEMLS), but the threshold again only varies
once per year. Therefore, current techniques do not fully
and directly consider day-to-day variations in these physi-
cal properties of the snow. In part, this omission is because
these variations in the properties of snow over the AIS are not
well known. However, recent improvements in atmospheric
reanalysis, firn modeling, and snow radiative-transfer mod-
eling allow us to capture these variations using a hybridized,
physics-based technique for detecting melt with a dynamic
threshold that varies day to day.

In this study, we address the need for a microwave melt
detection technique that has a physical basis in the com-
plex dynamics of snow microwave radiation. To achieve
this, we create a dynamic threshold that captures the mi-
crowave effects of variability in snow properties from day
to day instead of a statistical threshold that only varies year
to year. Our new dynamic thresholding technique identifies
melt days while quantifying the effects of snow temperature
and density on brightness temperature. First, we use inverse
radiative-transfer modeling to determine the grain size using
the Community Firn Model (CFM) and the Snow Microwave
Radiative Transfer model (SMRT) in non-melt conditions.
This inversion step is similar to that of Mote and Ander-
son (1995), although we only apply this inversion for grain
size and not density, as density is simulated by the CFM.
Then, we use the outputs of the CFM and SMRT to compute
daily varying thresholds. When a daily threshold is exceeded
by the observed brightness temperature from the Advanced
Microwave Scanning Radiometer 2 (AMSR-2), we mark it
as a melt day. We analyze our melt detection results from
our hybrid physics-based technique by comparing our results
to automatic weather station (AWS) data as well as results
from statistical thresholding techniques. At 13 AWSs and the
Larsen C ice shelf, we validate our melt detection technique
against observations and statistical thresholding techniques,
and we analyze our intermediary calculations of snow grain
size performed during our melt detection technique.

2 Data and models

2.1 Automatic weather stations

We run our melt detection technique for 13 AWSs to cal-
culate both melt days and snow grain size. Ten of these
sites experience melt and the other three are dry all year
round. The 10 melt sites have hourly melt rates from AWS-

Figure 1. A map of the locations of the 13 AWSs. Sites on the
grounded ice sheet are shown in red, sites on ice shelves are shown
in blue, and sites on ice rises are shown in cyan. The background im-
age is from http://www.shadedrelief.com (last access: 2 July 2024).

derived surface energy balance (SEB) analyses based on
observed conditions (Jakobs et al., 2020). The hourly melt
rates are converted to daily melt rates for comparison to mi-
crowave data. The three dry sites are Dome C (DC; 75.10° S,
123.35° E), Point Barnola (PB; 75.70° S, 123.25° E), and
Kohnen (75.00° S, 0.07° E). We include these three dry-snow
sites (Dome C, Point Barnola, and Kohnen) in our analysis of
microwave grain size calculations and use one dry-snow site
(Dome C) to validate the process of our melt detection tech-
nique.

The locations of all sites are shown in the map in Fig. 1.
These sites are found on the grounded ice sheet, ice shelves,
or ice rises, as shown in Fig. 1 (Jakobs et al., 2020). Our
time series spans from 2 July 2012 to 31 May 2019 for all
sites. However, the coverage of this time series provided by
the AWS-derived observations differs depending on the AWS
location (Jakobs et al., 2020). Although we run the hybrid
method for all 13 sites, there is no crossover in time of the
data from AWS 4 and 6 with the AMSR-2 record. Note that
the melt-detection and microwave-grain-size calculations are
independent of AWS observations, so we are able to detect
melt and calculate the microwave grain size at all sites. How-
ever, we chose locations to maximize where AWS observa-
tions are available so that we could ultimately validate our
melt detection at eight AWS locations (AWS 18, AWS 17,
AWS 14, AWS 15, AWS 19, and AWS 5).

2.2 Advanced Microwave Scanning Radiometer 2

AMSR-2 is a microwave radiometer on board the Japanese
satellite Global Change Observation Mission – Water Satel-
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lite 1 (GCOM-W1). This instrument provides 16 channels
between 6.9 and 89 GHz. We use the 12.5 km× 12.5 km
daily gridded product of AMSR-2 (Meier et al., 2018). We
use the 18.7 GHz channel, as this frequency is most sensitive
to the presence of liquid water on the surface of the AIS. We
use 18.7 GHz in the horizontal polarization (19H) for melt
detection and 18.7 GHz in the vertical polarization (19V) for
grain size. The penetration depth of this frequency varies
widely between studies. Tikhonov et al. (2019) showed that
the penetration depth of 19 GHz was a few tens of cen-
timeters using the Special Sensor Microwave/Imager (SS-
M/I) passive microwave radiometer. Colliander et al. (2022)
found the penetration depth at 19 GHz to be approximately
40 cm. The maximum depth of detection for this frequency
was shown to be 1 to 2 m in Picard et al. (2022a).

2.3 Community Firn Model

The CFM is an open-source model framework that simulates
firn property evolution, including densification, temperature,
melt, and grain growth (Stevens et al., 2020). Because the
surface grain size over the AIS is not well constrained, the
grain growth model for dry snow within the CFM assumes
a fresh snow grain radius of 0.1 mm across the AIS (Stevens
et al., 2020). When compared to surface grain sizes derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) Mosaic of Antarctica (MOA), this is an underesti-
mate for many areas of the AIS associated with frequent melt
events, especially ice shelves (Scambos et al., 2007; Haran et
al., 2018). Therefore, we do not use grain size information
from the CFM in our melt detection algorithm.

We force the CFM with daily Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-
2) precipitation and skin temperature data (Gelaro et al.,
2017). The CFM output is at the same spatial resolution as
MERRA-2: 0.5° latitude by 0.625° longitude (Gelaro et al.,
2017). The vertical resolution of the daily output profiles
from the CFM varies spatiotemporally and is on the order
of millimeters, which is too fine for input into the radiative-
transfer model. Radiative-transfer models become inaccurate
when layers are too small comparative to the wavelength
used. Therefore, we merge thin layers from the CFM output
to create thicker layers that are appropriate for the 18.7 GHz
frequency. The layer-merging process is performed based on
layer thicknesses of neighboring layers that fit the following
general structure. From the surface down to 1 m, each layer
of the CFM output is approximately 1 cm in thickness. From
1 to 5 m, each layer is approximately 10 cm. A single semi-
infinite bottom layer spans 5 to 50 m. The exact size of each
layer varies slightly from day to day and from location to lo-
cation due to layer formation and merging within the CFM.
The CFM output we use consists of the snow temperature
and density with depth and has daily temporal resolution.

2.4 Snow Microwave Radiative Transfer model
framework

The Snow Microwave Radiative Transfer model framework,
introduced in Picard et al. (2018), simulates the brightness
temperature and backscatter intensity while allowing for the
use of several previously developed microstructure and scat-
tering models, including the Dense Media Radiative Transfer
model (DMRT; Tsang et al., 1985) and the improved Born
approximation (IBA; Mätzler, 1998). These two models are
shown to produce nearly equivalent results (Löwe and Pi-
card, 2015). We chose to use IBA within SMRT (SMRT-IBA
hereafter).

Within SMRT-IBA, snow is represented as a two-phase
medium (assuming no liquid water), with ice within a
medium of air being the standard configuration. However,
this approximation becomes less accurate at densities greater
than 450 kg m−3. Therefore, we switch to the opposite con-
figuration of air within an ice medium when the ice volume
fraction exceeds 0.5. We achieve this by using the dense-
snow correction within SMRT-IBA. This allows us to model
the emission and scattering of snow at these higher densities,
following the IBA example in Picard et al. (2022b). We con-
sidered an alternative model from Picard et al. (2022b) that
uses the more advanced strong-contrast expansion theory, but
the model was not always numerically stable.

2.5 Microwave grain size

The snow microstructure model within SMRT-IBA that we
chose to implement is the exponential model, which con-
siders grain size as a single parameter (Picard et al., 2018).
Given that we are using an exponential model, the length
scale input for snow microstructure is referred to as the expo-
nential correlation length (LC). In this paper, we refer to this
value as the microwave grain size (LMW), a unifying concept
that allows for simple comparison to other snow microstruc-
ture parameters (Picard et al., 2022c). The microwave grain
size (LMW) is proportional to the Porod length (LP), which
relates the snow density (ρ), polydispersity (K), and optical
grain diameter (dopt) (Mätzler, 2002; Picard et al., 2022c):

LMW = LC =KLP =K(2/3)(1− ρ/ρice)dopt . (1)

Equation (1) shows that (a) microwave grain size is propor-
tional to grain diameter, (b) larger optical grain diameters are
associated with higher microwave grain sizes, and (c) higher
densities are associated with lower microwave grain sizes.
Therefore, microwave grain size is a complicated snow mi-
crostructural input into SMRT-IBA that relates to both grain
diameter and density.

We compare our calculations of microwave grain size
within SMRT to in situ observations of specific surface area
from two snow pits in Picard et al. (2014). These data can
be converted to the microwave grain size given informa-
tion about the snow density and polydispersity (Picard et al.,
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2022c). We also compare our results to the optical grain ra-
dius as derived from the MODIS MOA in 2013 (Scambos et
al., 2007; Haran et al., 2018), a mosaic of MODIS imagery.

3 Methodology

We use the radiative-transfer model SMRT to predict the
brightness temperature based on each day’s modeled snow
conditions. The snow temperature, density, microwave grain
size, and liquid water volume all affect the snow brightness
temperature and are inputs into SMRT. We always set the
snow’s liquid-water volume to zero regardless of how much
liquid water is truly present that day. In doing so, we compute
dry-snow brightness temperatures, which are lower than the
brightness temperatures that occur when snow is wet. In the-
ory, our modeled dry-snow brightness temperatures should
equal the observed brightness temperatures on days with no
liquid water present. We consider melt to have occurred on
a given day when the observed brightness temperature from
AMSR-2 exceeds the modeled dry-snow brightness temper-
ature by at least a variable amount related to the dry-snow
microwave grain size (5 to 10 K).

3.1 Inputs into SMRT: density, temperature, and
microwave grain size

We input snow density and temperature from the CFM into
SMRT. Additionally, snow microstructural parameters are
also required for snow radiative-transfer modeling, specifi-
cally, the microwave grain size for SMRT. However, accurate
daily varying microwave grain sizes are not currently avail-
able across the AIS from either modeling or remote sensing.
The CFM produces vertical grain size profiles that can be
converted to microwave grain sizes following Mätzler (2002)
using an approximation intended for the Alps. A closer ap-
proximation can be made using Picard et al. (2022c). How-
ever, these profiles from the CFM are highly dependent on
the fresh-snow grain size, which is not currently well enough
known across the AIS for use in microwave studies. Instead,
we first use the snow brightness temperature to determine the
snow microstructure – specifically, the microwave grain size
– on days that we are confident that the snow is dry.

We can make this determination because the brightness
temperature for 18.7 GHz in both the horizontal and verti-
cal polarizations decreases considerably as a function of mi-
crowave grain size (Fig. 2a). Since brightness temperature
is strongly influenced by microwave grain size, we solve
for microwave grain size on non-melt days when microwave
grain size is the only SMRT input variable that is unknown.

Brightness temperature also varies relative to temperature
and density (Fig. 2b and c). We note that there is a dis-
continuity in the relationship between brightness tempera-
ture and density (Fig. 2c). This discontinuity is related to
the challenge introduced by modeling snow at higher den-

sities (> 450 kg m−3). As discussed in Sect. 2.3, the model
switches from its standard “ice in air” configuration to “air in
ice”, resulting in a discontinuity when the density is approx-
imately 450 kg m−3. Since Fig. 2a to c are all idealized cases
with a uniform snow temperature and density with depth, this
discontinuity is a discrete jump. However, in a real snow pro-
file, snow temperature and density vary with depth. We show
the dependence of microwave grain size, temperature, and
density perturbations on brightness temperature from sample
output from the CFM for Dome C in Fig. 4d to f. The effect
of the model switch is integrated in Fig. 2f but still repre-
sents a source of uncertainty introduced by radiative-transfer
modeling.

3.2 Polarizations used for melt detection and the
microwave grain size

In this study, we focus our melt detection analysis on the hor-
izontal polarization, as it has been shown to be sensitive to
the presence of liquid water on the surface of the AIS, mak-
ing it useful for melt detection (Zwally and Fiegles, 1994;
Torinesi et al., 2003). However, the vertical polarization can
also be useful in microwave radiative-transfer modeling. as it
is generally easier to model the vertical component of emis-
sivity than the horizontal component. This is because the ver-
tical component of emissivity is not as sensitive to the de-
tailed density structure of icy layers (Comiso et al., 1997;
Durand et al., 2008). Therefore, we derive the microwave
grain size and use it to perform melt detection with the hybrid
method using 19H, as this channel is more sensitive to melt
(Sect. 3.3 to 3.4). We re-derive the microwave grain size us-
ing 19V (Sect. 3.3) and consider this version to be our official
microwave grain size product.

3.3 Calculating the microwave grain size (LMW)

To calculate the microwave grain size, we must hybridize
our method to a statistical thresholding technique presented
in Picard et al. (2022d). In this statistical thresholding tech-
nique, the mean brightness temperature from June to Septem-
ber within an AMSR-2 grid cell acts as the “dry brightness
temperature”. A melt day is defined to occur when the daily
brightness temperature exceeds this dry brightness tempera-
ture by at least 20 K. This is a relatively low threshold, mean-
ing that this technique produces many melt days. We also
compare our end results of the hybrid method to the statistical
thresholding technique introduced in Torinesi et al. (2003).
Torinesi et al. (2003) describe a recursive method that in-
volves first calculating the annual mean brightness temper-
ature plus N times its standard deviation (we used N = 3).
Then, they recursively remove days that exceed this thresh-
old, recalculating the mean brightness temperature and stan-
dard deviation each time. The third method for comparison
is that of Zwally and Fiegles (1994), where the threshold for
melt is taken to be 30 K over the mean brightness temper-
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Figure 2. Brightness temperature varies based on the microwave grain size, temperature, and density input into SMRT. In the three upper
subplots (a–c), we vary one input into SMRT while holding the other two input variables constant for an idealized, uniform snowpack. In the
three lower subplots (d–f), we vary one input SMRT variable relative to the depth-varying realistic snow profile (the CFM snow profile for
1 January 2014 at Dome C). (a) Holding temperature and density constant (at 265 K and 375 kg m−3, respectively), the blue and orange lines
show how brightness temperature varies with respect to microwave grain size for 19V and 19H, respectively. (b) Holding microwave grain
size and density constant (at 0.25 mm and 375 kg m−3, respectively), the blue and orange lines show how brightness temperature varies with
respect to temperature for 19V and 19H, respectively. (c) Holding microwave grain size and temperature constant (at 0.25 mm and 265 K),
the blue and orange lines show how brightness temperature varies with respect to density for 19V and 19H, respectively. (d) Forcing the
density and temperature to the realistic snow profile, the blue and orange lines represent the brightness temperature as we vary microwave
grain size for 19V and 19H, respectively. (e) Holding microwave grain size constant at 0.25 mm and forcing the density from the realistic
CFM profile, the blue and orange lines represent the brightness temperature as we perturb the temperature by a given value that is constant
with depth to the example CFM profile for 19V and 19H, respectively. (f) Holding microwave grain size constant at 0.25 mm and forcing
the temperature from the example CFM profile, we perturb the density by the density perturbation percentage multiplied by the air volume
fraction for 19V and 19H, respectively.

ature within an AMSR-2 grid cell for the time series. Note
that all three of these statistical thresholding techniques use
the horizontal polarization.

We incorporate the statistical thresholding technique de-
scribed in Picard et al. (2022d) to determine the days on
which we have the ability to calculate microwave grain size
based on the brightness temperature observed by AMSR-2.
Note that we have not assigned melt days as defined by the
hybrid method. Instead, we identify “potential melt days” as
any day within ±7 d of a melt day detected by the threshold-
ing technique described in Picard et al. (2022d). We chose
this value because 80 % of the AWS-derived melt falls within
this ±7 d window for the AWSs used in this study. “Poten-

tial non-melt days” are outside this ±7 d window. We chose
the threshold from Picard et al. (2022d) over other statisti-
cal techniques because it uses a threshold of only 20 K above
the mean horizontally polarized brightness temperature of its
assigned dry season, typically making it the most sensitive
to melt, which results in more potential melt days than other
statistical thresholding techniques.

SMRT predicts the brightness temperature based on the
input snow conditions. We employ what is termed as “in-
verse radiative-transfer modeling”. This technique was used
in Picard et al. (2012) to calculate the grain size for Dome C.
Unlike Picard et al. (2012), we use a lower single frequency
(18.7 GHz) and assume a vertically homogeneous grain size.
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One way to employ inverse radiative-transfer modeling is to
run the radiative-transfer model for a range of monotonically
increasing input microwave grain sizes and then select the
microwave grain size that produces the modeled brightness
temperature closest to the observed brightness temperature.
In our methodology, we apply a slightly different process that
yields equivalent results but is optimized for computational
efficiency.

For each potential non-melt day, we run SMRT once with
an overestimate or a “high” value for microwave grain size
(Linitial + bound) and a second time with an underestimate
or a “low” (Linitial − bound) value for microwave grain size.
The values used for Linitial and bound are denoted in the
table in Fig. 3b∗. We assume temperature and density pro-
files based on CFM outputs. This results in both an overesti-
mate and an underestimate for the brightness temperature, as
brightness temperature decreases as a function of microwave
grain size at this frequency. Using these two endmembers
as bounds, we linearly interpolate to the observed brightness
temperature to find a microwave grain size associated with
this value. We repeat this process several times over with
more accurate microwave grain sizes with narrower bounds
according to the table in Fig. 3b∗. Eventually, we converge
on a microwave grain size for that day that, when input into
SMRT, produces a modeled brightness temperature that is
approximately equal to the observed brightness temperature.
These steps are shown in Fig. 3a to e. This process is based on
the secant method (Wolfe, 1959). This minimization results
in modeled microwave grain sizes during potential non-melt
days that, when input into SMRT along with the tempera-
ture and density from the CFM, each produce a brightness
temperature that is within 0.1 K of its respective AMSR-2
observation.

To make this process more computationally efficient, we
break this step into three separate sub-steps, first running the
secant method less frequently over time to generate a more
accurate initial microwave grain size (Linitial) so that we can
converge on AMSR-2 brightness temperatures faster when
we run it at daily resolution. First, we estimate a general mi-
crowave grain size for that location for Sub-step #1 (single
LMW) by using any single potential melt day for that loca-
tion. Then, we use the output L from Sub-step #1 to solve for
microwave grain sizes for the first day of each month in Sub-
step #2 (monthlyLMW). Finally, in Sub-step #3 (dailyLMW),
using the nearest L in time from Sub-step #2 as the initial in-
put, we cycle converge on daily microwave grain sizes that,
when input into SMRT along with output from the CFM, best
match the local observed brightness temperature.

After we have established microwave grain sizes for each
of the potential non-melt days, we consider the microwave
grain size on potential melt days. Since melt dramatically in-
creases the brightness temperature, we cannot compute the
microwave grain size during potential melt days using the
method described above. In the absence of an accurate mi-
crowave grain size dataset or model output, we determine the

microwave grain size on potential melt days by linearly in-
terpolating between the non-melt days (Fig. 3f). This results
in our final microwave grain sizes, LMW, for all of the days
across the time series.

3.4 Assigning melt days and non-melt days

Now that we have a microwave grain size product, we can
calculate brightness temperatures under the assumption that
every day is dry. To do this, we use the temperature and den-
sity profiles from the CFM for each day as inputs for SMRT.
This generates dry-snow brightness temperatures, TB,dry snow,
as seen in Fig. 3g. To calculate our threshold brightness tem-
perature, we subtract a value from the microwave grain size.
Note that we specifically subtract from the microwave grain
size to find a dynamic threshold that is always higher than the
dry-snow brightness temperature, as brightness temperature
decreases with microwave grain size.

For this subtraction, we use the 4-fold mean of a 31 d win-
dowed running standard deviation of microwave grain size
along our time series for potential non-melt days (hereafter
referred to as 4σLMW ). We chose 4σLMW because our tempo-
ral linear interpolation across the potential melt days would
yield a poorer estimation of microwave grain size for lo-
cations where the microwave grain size varies significantly
from day to day. As shown in Fig. 3g, we input this lower
bound on microwave grain size into SMRT along with the
CFM temperature and density information to generate a dy-
namic threshold, TB,threshold, that varies from day to day. The
presence of liquid water causes an increase in brightness tem-
perature; we interpret any day where the AMSR-2 brightness
temperature exceeds this dynamic threshold as a melt day
and any day that falls below it as a non-melt day. This is
shown in Fig. 3h. We call this the hybrid method.

3.5 Validation of the dry-snow zone

The purpose of this study is to detect the presence of liquid
water in a physically based way and assess the technique’s
usefulness in detecting melt. Before applying our dynamic
thresholding method to determine melt days, we test how
AMSR-2, SMRT, and the CFM can be used together to es-
timate the brightness temperature at a dry site. We use Dome
C, a cold site on the Antarctic Plateau, as our test site. Fig-
ure 4a shows that the brightness temperature in 19H never
exceeds the Picard et al. (2022d) threshold, so, by default,
0 % of the time series would be considered to have melt ac-
cording to the hybrid method, as we detect no potential melt
days.

As seen in Fig. 4b, the microwave grain size has a mean
of 0.18 mm for 19V and appears to have a seasonal sig-
nal; higher microwave grain sizes occur during the austral
winter, and lower microwave grain sizes occur during the
austral summer. The amplitude of this oscillation is about
0.01 mm or 5 % of the mean microwave grain size for this
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Figure 3. Flow chart showing the hybrid method algorithm used to calculate melt days. Step 1 (top) illustrates how microwave grain size
(LMW) is calculated using the CFM and SMRT using repeated linear interpolations. Step 2 (bottom) illustrates how brightness temperature
(TB, dry snow) and its dynamic threshold (TB,threshold) can then be calculated from LMW and used to determine melt days versus non-melt
days. Panels (a)–(h) are individual steps described in the main text.

site. Since the CFM-modeled snow and firn temperature is
influenced by MERRA-2 skin-temperature forcing, we com-
pare the MERRA-2 skin temperature to in situ temperature
data from Dome C to check for a seasonal bias. Indeed, there
is a seasonal bias in the MERRA-2 skin temperature for this
site, and we remove it using a linear regression. The relation-
ship between the corrected temperature (Tcorrected) and the air
temperature in the CFM is Tcorrected = TCFM · 1.066− 9.246.
We re-run the CFM with the bias-corrected (BC) tempera-
ture input and we recalculate the microwave grain size using
SMRT. Figure 4b shows that the microwave grain size no
longer varies seasonally after our bias correction. The mi-
crowave grain size also increased in the BC run by a mean of
about 10 %.

We compare our SMRT-derived microwave grain sizes to
two snow profiles located at Dome C that are approximately
7 m in depth (Picard et al., 2014). We would not expect an ex-
act match for this comparison due to issues with representa-

tiveness both (a) spatially, within the 12.5× 12.5 km AMSR-
2 grid cell, and (b) with depth, as the penetration depth of
AMSR-2 at 19 GHz may be higher or lower than 7 m, as
noted in Sect. 2.2. The microwave grain sizes derived in situ
and using SMRT fall between 0.16 and 0.21 mm (Fig. 4b).

Our results show that neither the dry-snow brightness tem-
peratures nor our dynamic threshold are significantly af-
fected by the bias correction. Though the bias correction
does result in about a 15 % change in microwave grain size
for Dome C, this correction does not significantly impact
the dry-snow brightness temperature or our dynamic thresh-
old. This is by design, as dry-snow brightness temperature
is forced to AMSR-2 during all potential non-melt days. In
Fig. 4c, the difference is not visible, as they plot exactly on
top of each other. The bias-corrected threshold (−4σLMW )
also plots exactly on top of the non-bias threshold in Fig. 4c.
Since the errors into our dynamic threshold are small, we are
satisfied with using the non-BC temperature forcing. How-
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Figure 4. A 7-year time series that illustrates the hybrid method’s process of generating a dynamic threshold for melt detection at a dry site,
Dome C. (a) Brightness temperature from AMSR-2 (19H; black line) with thresholding techniques from Zwally and Fiegles (1994; dashed
dark blue line), Torinesi et al. (2003; dotted orange line), and Picard et al. (2022d; solid cyan line). (b) Microwave grain size from two Dome
C snow pits (Picard et al., 2014). Microwave grain size computed from the hybrid method (19V; green line) and the bias-corrected version
from the hybrid method (19V; navy line) along with grey bounds that represent 4σLMW . (c) AMSR-2 brightness temperature (19V; black
crosses). Bias-corrected version of the hybrid method dry-snow brightness temperature (19V; cyan line) along with the propagated 4σLMW
(grey area). This is plotted on top of the non-bias-corrected version of the dry-snow brightness temperature and the propagated 4σLMW (red
area). The propagated non-bias corrected (red area) and bias-corrected (grey area) versions are almost identical, causing the grey area to
eclipse the red area in (c).

ever, we acknowledge that there may be biases in microwave
grain size, as all errors in temperature, density, and radiative-
transfer modeling are propagated there.

4 Results

4.1 Melt detection

4.1.1 Automatic weather stations

Now that we have established the feasibility of using SMRT
and the CFM to model Antarctic brightness temperatures, we
branch out to sites that experience seasonal melt. We first fo-
cus on one site: AWS 18 on the Larsen C ice shelf. For AWS
18, there are days where the AMSR-2 brightness tempera-

ture exceeds the thresholds from Zwally and Fiegles (1994),
Torinesi et al. (2003), and Picard et al. (2022d) each year, as
seen in Fig. 5a. The hybrid method can detect extra days of
melting occurring within a 15 d window of a particular melt
day identified by Picard et al. (2022d) due to our ±7 d win-
dow for potential melt days. Given the numerous occasions
where AMSR-2 brightness temperatures surpass the Picard et
al. (2022d) threshold each year, there are a substantial num-
ber of days that the hybrid method could classify as having
melt. To quantify this number of days, the first step is com-
puting the microwave grain size at this site.

The mean microwave grain size for AWS 18 is 0.36 mm, as
shown in Fig. 5b. The linearly interpolated microwave grain
size increases from the austral spring to the austral fall for
each of the four austral summers shown, suggesting grain
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Figure 5. Calculation of the microwave grain size and detection of melt days using the hybrid method compared to AWS 18 observations
and statistical thresholding techniques. (a) Brightness temperature from 19H from AMSR-2 (black line) with thresholding techniques from
Zwally and Fiegles (1994; dashed dark-blue line), Torinesi et al. (2003; dotted orange line), and Picard et al. (2022d; solid cyan line).
(b) Microwave grain size computed from the hybrid method (19H; green line) along with the ±4σLMW bounds. (c) AMSR-2 brightness
temperature (19H; black line). Hybrid method dry-snow brightness temperature (19H; purple line) with the propagated −4σLMW (grey
bounds). Melt days detected by the hybrid method (blue dots). (d) Melt days detected by the hybrid method (purple dots). These represent
melt days versus non-melt days in a binary fashion and do not reflect a specific melt volume. AWS surface energy balance melt data (grey
bars). (e) Days when AWS surface energy balance melt > 0 (black lines). Melt days detected by the hybrid method (purple lines). Melt
days detected by Picard et al. (2022d; cyan lines), Torinesi et al., (2003; orange lines), and Zwally and Fiegles (1994; dark blue lines). The
multicolored right column is the corresponding percentage of melt days compared to the total days from each of the four melt detection
techniques and the AWS.
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growth due to wet-snow metamorphosis during the austral
summer (Brun, 1989). In Fig. 5c, the dry-snow brightness
temperature lines up exactly with the AMSR-2 brightness
temperature because of how we calculated the microwave
grain size during all potential non-melt days. The propa-
gated thresholding bound 4σLMW we use to determine melt
days varies from about 170 to 210 K across this time se-
ries. Melt days make up 29.6 % of the time series using the
hybrid method and 27.1 % of the time series according to
AWS-derived melt data. In Fig. 5d and e, melt days and non-
melt days that are assigned by the hybrid method match with
AWS-derived melt rates at a rate of 89.2 % of the time se-
ries, making it the second best of the techniques we studied.
The Picard et al. (2022d) thresholding technique matches the
SEB-derived melt rate best for this location at 89.3 % (Ta-
ble 1). For this AWSs, there are similar numbers of melt days
assigned by the hybrid method and Picard et al. (2022d) and
fewer melt days assigned by Torinesi et al. (2003) and Zwally
and Fiegles (1994).

As shown in Fig. 6a, Picard et al. (2022d) and the hybrid
method at AWS 17 match with the AWS-derived melt rates
for 91.0 % and 91.2 % of the time series, respectfully. Ad-
ditionally, for all AWSs shown besides AWS 19, there are
isolated melt events near or during the austral summer that
are detected by the AWS-derived data but are not identified
by any of the melt detection techniques, as shown in Fig. 6a,
b, c, and e. The technique that detects melt the best varies
from site to site, with each technique matching best with the
AWS for at least one site according to Table 1. AWS 11 and
16 are not shown in Fig. 6 as they both had very infrequent
melt and none of the melt detection techniques identified
any melt days at these locations, as shown in Table 1. Over-
all, the technique that matched best was that of Torinesi et
al. (2003), which matched with the AWSs at a rate of 94.6 %,
weighted by the number of days for each site. However, all
the techniques presented matches of between 94 % and 95 %
to AWS-derived data for all sites; all the techniques gave a
similar overall performance compared to AWS-derived data.

4.1.2 Larsen C ice shelf

For the 2013–2014 melt season, we applied the hybrid
method and compared it to the statistical thresholding tech-
niques, as shown in Fig. 7. The spatial-mean melt duration,
or number of melt days across a melt season, for the hy-
brid method was 61 melt days, which was lower than Picard
et al. (2022d) by 5 melt days. However, the average num-
ber of melt days was higher than Torinesi et al. (2003) and
Zwally and Fiegles (1994), which were 44 and 36, respec-
tively. The region with the biggest difference between our
hybrid method and the Picard et al. (2022d) method is out-
lined in the southern portion of the Larsen C by a black box
in Fig. 7d.

Melt onset is similar for the hybrid method and Picard et
al. (2022d) (Fig. 7b and e). Average melt onset is 12 and 27 d

later for Torinesi et al. (2003; Fig. 7h) and Zwally and Fiegles
(1994; Fig. 7k), respectively, than for the hybrid method. The
pattern of melt onset is similar for all four methods, with an
earlier melt onset closer to the grounding line (Fig. 7c, f, i,
and l). While the melt detection techniques show similar spa-
tial patterns of melt onset, this is not seen for melt end date.
While all four methods generally have later melt end dates
near the grounding line and earlier melt dates closer to the
periphery of the ice shelf, the Picard et al. (2022d) method
gives a pattern of later melt end dates in the southern interior
portion of the ice sheet, as shown by the boxed outline.

Luckily, AWS 14 and AWS 15 both fall in this area, so
we can compare these methods to the AWS-derived data. For
both sites, the hybrid method identifies fewer melt days than
Picard et al. (2022d), which is closer to that of the AWS-
derived data, as shown in Fig. 8a and c. In Fig. 8a, for AWS
14, Picard et al. (2022d) indicates four additional melt days
that fall from March to May even though the final melt day
according to AWS-derived data is in February. For AWS 14
and 15. as seen in Fig. 8b and d, the additional days marked
as melt days by Picard et al. (2022d) fall in the beginning of
the melt season. In Fig. 8b and d, these extra sites identified
by Picard et al. (2022d) fall between our dynamic thresh-
old and our dry-snow brightness temperature, as expected by
our methodology. It is notable that in Fig. 8a, the majority of
the AWS-derived melt ends at the end of January for AWS
14. However, as seen in Fig. 8b, AMSR-2 brightness tem-
peratures remain elevated during the first 8 d of AMSR-2, so
these are considered to have melt by both the hybrid method
and Picard et al. (2022d). A similar pattern is noticeable a
week earlier for AWS 15 in Fig. 8c and d.

4.2 Microwave grain size

4.2.1 Comparison to MOA

In addition to performing melt detection, the hybrid method
also produces microwave grain size information. In Fig. 9a,
microwave grain size varies from location to location.
Among these 13 sites, lower microwave grain sizes are found
on grounded ice sheet. Slightly higher microwave grain sizes
are found on the ice shelves of Dronning Maud Land. Mi-
crowave grain sizes are highest at the Antarctic Peninsula
(for the Larsen B ice shelf remnant site and the three Larsen
C sites). We compare our microwave grain sizes to the op-
tical grain radius from the 2013 MOA, which has a similar
pattern to microwave grain size across the 13 AWSs (Ha-
ran et al., 2018). The Pearson correlation coefficient between
these two grain size variables is 0.88 (p < 0.01), as shown in
Fig. 9b.

The spatial pattern in optical grain radius across the Larsen
C from the 2013 MOA is shown in Fig. 10. It is shown at
750 m resolution in Fig. 10a and is upscaled to the AMSR-
2 grid in Fig. 10b. There is generally a higher optical grain
radius from the 2013 MOA both southward and toward the

The Cryosphere, 18, 3613–3631, 2024 https://doi.org/10.5194/tc-18-3613-2024



M. E. Dattler et al.: A physics-based Antarctic melt detection technique 3623

Table 1. A table comparing the results from the hybrid method and the Picard et al. (2022d), Torinesi et al. (2003), and Zwally and Fiegles
(1994) melt-day detection methods for eight AWSs (AWS 18, 17, 14, 15, 19, 4, 11, and 16) to SEB-derived melt data. “% matching AWS”
refers to the percentage of days in the time series whose melt status (whether it is a melt or dry day) by the given melt detection technique
matches that day’s melt status given by the AWS observations.

% matching AWS

No. days No. AWS melt days Hybrid method Picard et al. (2022d) Torinesi et al. (2003) Zwally and Fiegles (1994)

AWS 18 1498 407 89.19 89.25 87.38 86.38
AWS 17 1348 287 91.02 91.17 91.69 90.95
AWS 14 1094 173 90.86 91.77 93.78 93.42
AWS 15 674 72 88.87 88.72 93.32 94.07
AWS 19 421 87 94.30 94.77 95.01 91.45
AWS 5 586 54 95.73 94.88 94.03 91.98
AWS 11 2404 17 99.13 99.25 99.25 99.29
AWS 16 1265 10 99.21 99.21 99.21 99.21

Avg. (weighted by no. days) 94.21 94.34 94.64 94.10

Avg. (weighted by no. AWS melt days) 90.87 91.06 91.10 90.15

grounding line. Microwave grain size decreases gradually
across the Larsen C from lower latitudes to higher latitudes.
Additionally, it has slightly lower microwave grain sizes
closer to the grounding line. The Pearson correlation coeffi-
cient between optical grain radius and microwave grain size
across the Larsen C is 0.34 (p < 0.01).

4.2.2 Comparison to melt duration

In addition to optical grain radius, microwave grain size also
appears to have a relationship with melt duration. In Fig. 11a,
we can see lower values of mean microwave correlation
length on the grounded ice sheet along with a lower or zero
melt duration. On Dronning Maud Land, there are moderate
durations of melt and moderate microwave grain sizes, and
on the Antarctic Peninsula there are longer durations of melt
and larger microwave grain sizes. In Fig. 11b, there is a re-
lationship between microwave grain size and melt duration,
with a Pearson correlation coefficient of 0.94 (p < 0.01) for
these 13 sites. For more further information on melt detec-
tion and microwave grain size, see the Supplement for the
results from mid-2012 to mid-2019 that were used to create
these temporal averages.

Across the Larsen C, we can see a somewhat similar spa-
tial pattern of microwave grain size in Fig. 12a to that of
melt duration in Fig. 12b for the 2013–2014 melt season.
These two values are related at a Pearson correlation coeffi-
cient of 0.56. In Fig. 12c, we consider the “total threshold ex-
ceedance”, which is the integrated exceedance of the AMSR-
2 brightness temperatures above the hybrid method’s dy-
namic threshold. Total threshold exceedance and microwave
grain size are correlated at a Pearson correlation coefficient
of 0.92 across the Larsen C.

5 Discussion

5.1 Intercomparison of melt detection techniques

In this study, we developed a melt detection algorithm that is
robust to temperature and density variations. In certain sce-
narios, this technique can perform better than the technique
to which it is hybridized. This is the case for AWS 14 and
AWS 15 on the Larsen C ice shelf during the 2013–2014
melt season. However, when considering eight AWSs across
multiple melt seasons, we discovered that the hybrid method
does not necessarily improve the agreement between melt
events determined by AWS-derived melt data and predicted
by the hybrid method.

The hybrid method does not appear to improve melt detec-
tion, potentially because statistical thresholding techniques
and physics-based techniques are both able to capitalize on
the strong relationship between the presence of liquid wa-
ter in snow and the brightness temperature of the 19H chan-
nel. All methods perform similarly against AWS-derived data
at similar rates. Therefore, for the purposes of large-scale,
ice-sheet-wide melt detection where melt volume and grain
size are not of interest, we still recommend the use of sta-
tistical thresholding techniques due to their computational
efficiency over our physics-based method. Given our com-
parison to AWS-derived data, out of the three statistical
thresholding techniques tested, we recommend the Torinesi
et al. (2003) method, as it matched best with AWS-derived
melt data. The Picard et al. (2022d) method performs second
best among the melt detection techniques. In the develop-
ment of this method, their goal in melt detection was “sim-
plicity and reproducibility” for eight sites rather than design-
ing the most physical and robust algorithm for meltwater de-
tection across the AIS (Picard et al., 2022d). The fact that
it generally performs well shows that even techniques de-
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Figure 6. A comparison of melt detection between the hybrid method and three statistical thresholding techniques and AWS observations.
Melt indicators from (a) AWS 17, (b) AWS 14, (c) AWS 15, (d) AWS 19, and (e) AWS 5. (a–e) Melt days when AWS surface energy balance
melt > 0 (black lines). Melt days detected by the hybrid method (purple lines). Melt days detected by Picard et al. (2022d; cyan lines),
Torinesi et al. (2003; orange lines), and Zwally and Fiegles (1994; dark blue lines). The multicolored right column shows the corresponding
percentage of identified melt days compared to total days based on each of the four melt detection techniques and the AWS.

signed for simplicity can have similar performance to more
advanced techniques for melt detection. While these tech-
niques perform relatively well against the AWS-derived data,
the hybrid method is still especially important given its basis
in physics. Future development, such as using 5 d resolution
for microwave grain size, could increase the computational
efficiency for the hybrid method and allow for its use across
larger areas. Moreover, future studies could use the hybrid
method to develop more robust statistical thresholding tech-
niques that can be readily used across the AIS.

5.2 Limitations of melt detection validation using
AWSs

A key finding is that all melt detection techniques performed
relatively similarly in comparison to the AWS-derived melt.
There appears to be a limit to their performance due to sev-
eral factors related to how we validate melt. One factor is that
AWS-derived melt data deduce the melt volume produced
on a certain day, whereas a “melt day” indicates the pres-
ence of liquid water on the ice sheet as derived from daily
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Figure 7. The hybrid method melt detection and three statistical thresholding techniques across the Larsen C. Red star and red circle in (a)
are the locations of AWS 14 and AWS 15, respectively. Black box in (d) represents the area of high melt duration detected by Picard et
al. (2023d). Panels (a), (d), (g), and (j) represent the melt duration for the 2013–2014 melt season (number of melt days) derived using the
hybrid method, Picard et al. (2022), Torensini et al. (2003), and Zwally and Fiegles (1994), respectively. Panels (b), (e), (h), and (k) represent
the melt onset in days since 1 August 2013. Panels (c), (f), (i), and (l) represent the melt end in days since 1 August 2013.

microwave data. While we expect these two variables to be
very well correlated, we do not expect them to match ex-
actly because liquid water can persist on the surface of the ice
sheet even though the snow is not actively melting. Further-
more, since melt may not always occur during overpasses,
AMSR-2 may miss or preferentially detect melt. Differences
can also result from the large footprint of the microwave ra-
diometer. Finally, AWS-derived melt data contain some un-

certainty associated with both measurement error and model
accuracy (Jakobs et al., 2019). For these reasons, it is chal-
lenging to validate melt detection from microwave radiom-
etry using AWS-derived data, which is a similar finding to
that of de Roda Husman et al. (2022). It is possible that one
of the melt detection methods is truly performing better than
the others, but that conclusion may be clouded by our com-
parison to AWS-derived data.

https://doi.org/10.5194/tc-18-3613-2024 The Cryosphere, 18, 3613–3631, 2024



3626 M. E. Dattler et al.: A physics-based Antarctic melt detection technique

Figure 8. Validation of melt detection using the hybrid method and the Picard et al. (2022d) method using observations at AWS 14 and
AWS 15. Panels (a) and (b) represent AWS 14, and (c) and (d) represent AWS 15. (a, c) AWS surface energy balance melt volume (grey
bars), melt days detected by the hybrid method (purple lines), and melt days detected by Picard et al. (2022d; cyan lines). Hatched grey area
represents the period where AWS SEB data are not available. Note that w.e. stands for “water equivalent”. (b, d) Hybrid method threshold
(19H; dashed grey line) and AMSR-2 brightness temperature (19H; solid black line). The area between the hybrid method threshold and the
hybrid method dry snow (solid grey line) is shaded in light grey. Purple dots represent melt days detected by both the hybrid method and
the Picard et al. (2022d) method. Cyan dots represent melt days that were only detected by the Picard et al. (2022d) method. Magenta stars
represent melt days detected by both techniques. Magenta dots represent melt days detected by only the hybrid method.

5.3 Limitations of the hybrid method

At present, the hybrid method is tied to a statistical threshold-
ing technique described in Picard et al. (2022d); our method
limits the potential days that could be assigned melt to a
15 d window around days that are considered by Picard et
al. (2022d) to present melt. While this allows our method to
detect melt days that are clustered close to melt events de-
tected by Picard et al. (2022d), it also prevents our method
from detecting any melt events that are isolated in time, such

as over the austral winter. However, future work may allow
for this method to be independent from statistical threshold-
ing techniques. For example, future work could include mak-
ing the potential melt days self-consistent with the calculated
melt days in an iterative fashion. This method would then be
able to identify some small or localized melt events that are
isolated in time from larger melt events that are detected by
statistical thresholding techniques.
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Figure 9. Comparison between microwave grain size from the hybrid method and optical grain radius from the MODIS 2013 Mosaic of
Antarctica (MOA). (a) Values of the microwave grain size (LMW; green line) and optical grain radius from the MOA (ropt; dashed grey line)
from the 13 AWSs (Haran et al., 2018). (b) Scatterplot of microwave grain size (LMW) and optical grain radius (ropt). Data from both the
hybrid method and Mosaic of Antarctica are from 27 October to 16 December 2013.

Figure 10. Maps of the Larsen C to compare optical grain radius and microwave grain size from the hybrid method. (a) MODIS Mosaic
of Antarctica (MOA; 2013) optical grain size (ropt) (Haran et al., 2018). (b) MOA optical grain size (ropt) re-gridded to 12.5 km× 12.5 km
(Haran et al., 2018). (c) Microwave grain size (LMW) from the hybrid method. (d) Scatter plot of microwave grain size (LMW) and MOA
optical grain radius (ropt). Data from both the hybrid method and Mosaic of Antarctica are from 27 October to 16 December 2013

Given that the CFM can be run across the AIS, the hybrid
method could be run for ice-sheet-wide studies as well. How-
ever, a limitation of the hybrid method is its computational
efficiency. Inverting SMRT to calculate microwave grain size
takes several iterations and is highly computationally expen-
sive. Running the hybrid method for the 2013–2014 melt sea-
son across the Larsen C ice shelf took about 5 d on a local
machine. Running the hybrid method on an ice-sheet-wide
scale would require careful consideration of computational
resources and likely the use of supercomputing resources. A
small change to somewhat improve the speed would be to im-
plement the Brent method instead of the secant method dur-
ing our inversion to calculate microwave grain size (Brent,
1973).

Other limitations of the hybrid method include uncertainty
related to modeling the brightness temperature for snow den-
sities over 450 kg m−3. A potential improvement could be
made by using the strong-contrast expansion (SCE) instead
of using a modified version of the IBA (Picard et al., 2022b).
However, the melt detection technique forces the dry-snow
brightness temperature to AMSR-2, which reduces the er-
ror propagated from either firn modeling or radiative-transfer
modeling.

Additionally, we acknowledge that, though our dry-snow
brightness temperatures are physics based, our fixed bound
on microwave grain size (−4σLMW ) with a 31 d window to
calculate the dynamic threshold is based in statistics. We
chose this bound for the melt threshold because higher vari-
ations in microwave grain size on a day-to-day basis indicate
higher uncertainty in our linear interpolation of microwave
grain size across the melt season and thus increase the un-
certainty in our dry-snow brightness temperatures. In theory,
if our firn and radiative-transfer modeling were perfect and
we knew the microwave grain size exactly, we could set this
bound to zero and use the dry-snow brightness temperature
as our threshold. While we compare the hybrid method to
AWS-derived data, future work could instead use the AWS-
derived data to better calibrate the hybrid method. Addition-
ally, improvements in firn modeling, especially of grain size,
would allow us to more accurately model dry-snow bright-
ness temperature and allow us to reduce this bound on mi-
crowave grain size by increasing the accuracy of dry-snow
brightness temperature.
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Figure 11. Comparison between microwave grain size and melt duration, both from the hybrid method. (a) Microwave grain size (LMW;
green line) and mean melt duration between mid-2012 and mid-2019 for the 13 AWSs. (b) Scatterplot of microwave grain size (LMW) and
mean melt duration. Red line represents linear regression.

Figure 12. Larsen C. (a) Microwave grain size (LMW) from the hybrid method (March 2014 to the end of June 2014). (b) Melt duration for
the 2013–2014 melt season from the hybrid method. (c) Total threshold exceedance, or the integral between the hybrid method’s dynamic
threshold and AMSR-2 observations for the 2013–2014 melt season. (d) Scatterplot of melt duration and microwave grain size (LMW).
(e) Scatterplot of total threshold exceedance and microwave grain size (LMW).

5.4 Applications and limitations of the microwave
grain size

A key advantage of the hybrid method over the statistical
thresholding techniques is that the hybrid method provides
the microwave grain size, an additional piece of information
that may be useful in multiple ways. In our comparison of the
hybrid method’s microwave grain size to the optical grain
radius from the MOA, we see a significant relationship be-
tween these two values. We do not expect a one-to-one cor-
relation to the MOA. This is primarily because the 18.7 GHz
frequency is sensitive to the upper 5 to 10 m of snow, whereas

MODIS is predominantly sensitive to the first 1 cm of snow
(Lyapustin et al., 2009).

In deriving microwave grain size, we identify a positive
correlation between microwave grain size and average melt
duration. Any error in the CFM’s temperature and density
information could theoretically propagate into the four pa-
rameters – microwave grain size, dry-snow brightness tem-
perature, our dynamic threshold, and number of melt days –
as illustrated by the flow chart in Fig. 3. However, that alone
would not necessarily lead to a positive correlation between
the hybrid method’s microwave grain size and the average
melt duration as assigned by the hybrid method.
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To illustrate the propagation of these biases, we describe
an example scenario where MERRA-2 has a biased-high skin
temperature for a particular site. Then the CFM would have
a biased-high snow temperature profile. We solve for mi-
crowave grain sizes on non-melt days that, along with CFM
density and biased-high temperature profiles, result in mod-
eled dry-snow brightness temperatures that match AMSR-2.
Microwave grain size will be overestimated, contributing to a
reduction in dry-snow brightness temperature to compensate
for the artificial increase caused by the biased-high temper-
ature profile. Dry-snow brightness temperature on non-melt
days is, by definition, robust to errors in SMRT and MERRA-
2 because it is forced to match AMSR-2. However, overesti-
mating the microwave grain size may mean also overestimat-
ing the standard deviation in microwave grain size, result-
ing in a biased-high dynamic threshold and fewer detected
melt days. The reverse would be true for underestimating the
MERRA-2 skin temperature. SMRT input biases would act
to reduce the correlation between microwave grain size and
average melt duration.

Therefore, the relationship between microwave grain size
and melt duration is likely physical in nature and suggests
that the snow microstructure is related to the percentage of
the year in which snow undergoes melt. This relationship
has a physical basis; wet snow metamorphism leads to faster
grain growth than dry-snow metamorphism (Brun, 1989),
which is likely why locations that experience significant melt
tend to have higher microwave grain sizes. These variations
in microwave grain size and snow texture are important be-
cause they affect the thermal conductivity, permeability, di-
electric properties, and optical properties of snow. Therefore,
microwave grain size is highly relevant for ice sheet research,
especially satellite altimetry, as the snow microstructure in-
fluences the radar penetration depth. However, there are lim-
itations to the utility of the microwave grain size product of
the hybrid method as it currently stands. Our calculations
of microwave grain size refer to a bulk layer with a depth
that depends on the penetration depth of AMSR-2 at that fre-
quency. Indeed, the penetration depth at a given frequency
depends on the microwave grain size. This circuitous rela-
tionship means that how representativeness of our microwave
grain sizes to the physical snowpack is unclear. However, fu-
ture developments such as using two different frequencies to
establish an approximate surface microwave grain size and
slope with depth could help alleviate this issue in a similar
way as in Picard et al. (2012).

5.5 Goal of melt quantification

The ultimate reason for this study is to build on melt de-
tection research with the goal of melt quantification across
the AIS. Currently, observations of melt quantity in Antarc-
tica are limited to a small number of in situ surface energy
balance sites. In this study, we show the feasibility of us-
ing a satellite- and physics-based approach to melt detec-

tion. With additional refinement and calibration, this hybrid
method has the potential to estimate melt volumes instead of
simply detecting the presence of melt. In a similar way to
how we used inverse radiative-transfer modeling to calculate
microwave grain size, we could potentially use it to solve
for melt volume by essentially capitalizing on the degree to
which AMSR-2 exceeds the dry-snow brightness tempera-
ture in a way that is informed by radiative-transfer modeling.
The strong correlation between total threshold exceedance
and microwave grain size may hint that the total threshold
exceedance may be related to the amount of liquid water
present because larger amounts of liquid water may increase
wet-snow metamorphism. However, it is worth noting that
this increased correlation may also be related to the propor-
tion of an AMSR-2 grid cell where liquid water is present
and may not allow the quantification of liquid-water volume.

An algorithm that solves for even a rough estimate of melt
volume would constitute a key step forward in understand-
ing surface melt across the AIS. This improvement would
likely require the use of multiple frequencies and polariza-
tions. This inverse problem is especially complex because
liquid water has varying stratification vertically. More testing
would need to be done to not only see what volume and verti-
cal distribution of melt would saturate the microwave signal
at a given frequency but also understand the effects of lo-
calized melt within the 12.5 km AMSR-2 footprint. Quanti-
fying surface melt from microwave radiometry is a complex
problem; however, addressing it would greatly improve our
understanding of surface melt on ice sheets and ice shelves.

6 Conclusions

Using the hybrid method, we estimate the microwave grain
size of snow by combining firn model outputs and inverse
radiative-transfer modeling forced by AMSR-2 for dry-snow
conditions. Next, we interpolate the microwave grain size
across the melt season, using it along with information from
the CFM to forward model the brightness temperature, as-
suming dry-snow conditions. This approach allows us to cre-
ate a dynamic hybrid threshold to identify melt days in a
way that addresses day-to-day fluctuations in weather and
snow conditions. Bias correction of reanalysis forcing can
affect the modeled microwave grain size but only minorly
influences the dry-snow brightness temperature. By examin-
ing eight sites that experience melt and comparing to AWS-
derived melt data, we find that the hybrid method performs
similarly to the thresholding techniques. Running the hy-
brid method across the Larsen C ice shelf for the 2013–2014
melt season reveals an area of overestimated melt days that
appears to be reined in by the hybrid method. The hybrid
method also has the advantage of providing the microwave
grain size, which is correlated with the MOA grain radius
and the hybrid method’s melt duration. This work shows that
we can combine firn modeling with radiative-transfer model-
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ing to determine properties of the snow, potentially expand-
ing the use of snow radiative-transfer modeling beyond point
locations with observational data. This methodology can be
further developed for use in melt volume studies, as opposed
to simply melt detection.
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