Articles | Volume 18, issue 6
https://doi.org/10.5194/tc-18-2875-2024
https://doi.org/10.5194/tc-18-2875-2024
Research article
 | 
21 Jun 2024
Research article |  | 21 Jun 2024

Exploring non-Gaussian sea ice characteristics via observing system simulation experiments

Christopher Riedel and Jeffrey Anderson

Related authors

Bounded and categorized: targeting data assimilation for sea ice fractional coverage and nonnegative quantities in a single-column multi-category sea ice model
Molly M. Wieringa, Christopher Riedel, Jeffrey L. Anderson, and Cecilia M. Bitz
The Cryosphere, 18, 5365–5382, https://doi.org/10.5194/tc-18-5365-2024,https://doi.org/10.5194/tc-18-5365-2024, 2024
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
A hybrid ice-mélange model based on particle and continuum methods
Saskia Kahl, Carolin Mehlmann, and Dirk Notz
The Cryosphere, 19, 129–141, https://doi.org/10.5194/tc-19-129-2025,https://doi.org/10.5194/tc-19-129-2025, 2025
Short summary
How many parameters are needed to represent polar sea ice surface patterns and heterogeneity?
Joseph Fogarty, Elie Bou-Zeid, Mitchell Bushuk, and Linette Boisvert
The Cryosphere, 18, 4335–4354, https://doi.org/10.5194/tc-18-4335-2024,https://doi.org/10.5194/tc-18-4335-2024, 2024
Short summary
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024,https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024,https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024,https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary

Cited articles

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The Data Assimilation Research Testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a
Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. a
Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus, 59A, 210–224, 2007. a
Anderson, J. L.: A non-Gaussian ensemble filter update for data assimilation, Mon. Weather Rev., 138, 4186–4198, 2010. a, b
Anderson, J. L.: A marginal adjustment rank histogram filter for non-Gaussian ensemble data assimilation, Mon. Weather Rev., 148, 3361–3378, 2020. a
Download
Short summary
Accurate sea ice conditions are crucial for quality sea ice projections, which have been...
Share