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Abstract. The Arctic is warming at a faster rate compared to
the globe on average, a phenomenon commonly referred to as
Arctic amplification. Sea ice has been linked to Arctic ampli-
fication and has gathered attention recently due to the decline
in summer sea ice extent. Data assimilation (DA) is the act
of combining observations with prior forecasts to obtain a
more accurate model state. Sea ice poses a unique challenge
for DA because sea ice variables have bounded distributions,
leading to non-Gaussian distributions. The non-Gaussian na-
ture violates the Gaussian assumptions built into DA algo-
rithms. This study presents different observing system simu-
lation experiments (OSSEs), which will provide a data assim-
ilating testing framework through experimental observation
networks and synthetic observations. The OSSE framework
will help determine the best data assimilation configuration
for assimilating sea ice and snow observations. Findings indi-
cate that assimilating both sea ice thickness and snow depth
observations while omitting sea ice concentration observa-
tions produced the best sea ice and snow forecasts in our
idealized experimental setup. A simplified DA experiment
helped demonstrate that the DA solution is biased when as-
similating sea ice concentration observations. The biased DA
solution is related to the observation error distribution being
a truncated normal distribution, and the assumed observation
likelihood is normal for the DA method. Additional OSSEs
show that using a non-Gaussian DA method does not allevi-
ate the non-Gaussian effects of sea ice concentration obser-
vations, and assimilating sea ice surface temperatures has a
positive impact on snow updates. Finally, it is shown that the
perturbed sea ice model parameters used to create additional
ensemble spread in the free forecasts lead to a year-long neg-
ative snow volume bias.

1 Introduction

Warming over the Arctic region, a phenomenon commonly
referred to as Arctic amplification (Serreze and Francis,
2006), has been identified in both observations (Serreze et al.,
2009; England et al., 2021) and climate models (Holland
and Bitz, 2003). Numerous studies have found this warming
rate to be approximately twice as fast as the global average
(Walsh, 2014; Jansen et al., 2020; Yu et al., 2021). A recent
study found that Arctic-amplification-related warming could
be 3–4 times faster than the global average, more than dou-
ble the warming rate previously estimated (Rantanen et al.,
2022). Projections of Arctic amplification rely heavily on the
ability of coupled numerical models to represent each Earth-
system component. One important Earth-system component
linked to Arctic amplification – the cryosphere – has gathered
attention recently due to the declining summer sea ice extent
over recent decades (Screen and Simmonds, 2010; Jenkins
and Dai, 2021). During wintertime, sea ice can act as an in-
sulator, trapping ocean heat created from the absorbed short-
wave radiation during the summer sea ice loss season within
the ocean, allowing for cooler winter atmospheric tempera-
tures (Chung et al., 2021). Additionally, snow cover on top
of sea ice can impact seasonal sea ice evolution, growth, and
melt (Holland et al., 2021). Providing more accurate sea ice
and snow states via data assimilation in our coupled Earth-
system modeling frameworks could help improve future pro-
jections of the climate and the processes related to Arctic
amplification.

Data assimilation (DA) is the action of optimally combin-
ing information from prior forecasts with observations to im-
prove the current estimate of the state of any Earth-system
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component. The statistical methods used to optimally com-
bine this information often have Gaussianity assumptions,
depending on the choice of the data assimilation method.
One data assimilation method that has commonly been ap-
plied in Earth-system problems is the ensemble Kalman fil-
ter (EnKF; Evensen, 2003; Houtekamer and Zhang, 2016),
which includes Gaussian assumptions in its original Kalman
filter formulation (Kalman, 1960). These Gaussian assump-
tions can lead to biased solutions when prior forecast distri-
butions are non-Gaussian or when errors associated with the
observations are also non-Gaussian. Common sea ice vari-
ables have both double- and single-bounded quantities (e.g.,
doubly bounded – sea ice concentration; singly bounded –
sea ice thickness) that lead to non-Gaussian distributions,
which would violate Gaussian assumptions. Studies have in-
vestigated the performance of different EnKF formulations
(stochastic versus deterministic) under non-Gaussian condi-
tions and found that while the stochastic formulation was
more stable, both had biased solutions (Lawson and Hansen,
2004; Lei et al., 2010). Different ensemble data assimila-
tion methods that remove the Gaussian assumption have
been proposed; however, many have only been tested in low-
order models and could potentially be expensive in high-
dimensional geophysical models (Pham, 2001; Anderson,
2010; Sakov et al., 2012b; Metref et al., 2014). Here, in-
stead of testing a new ensemble data assimilation method, we
will conduct experiments to highlight the impacts of differ-
ent non-Gaussian sea ice variables during data assimilation
updates.

The application of data assimilation to sea ice problems
is not a novel idea since this research topic has been investi-
gated for more than 2 decades. Common observation descrip-
tive quantities for sea ice are concentration (e.g., the frac-
tion of a grid cell covered with sea ice) and thickness (e.g.,
the sea ice surface extending down into the ocean). Previ-
ous studies have highlighted the importance of initial condi-
tions when trying to predict Arctic sea ice from local to sea-
sonal timescales, especially regarding accurate initialization
of sea ice thickness (Msadek et al., 2014; Day et al., 2014;
Dirkson et al., 2017). Although different data assimilation
techniques have been used to update sea ice state variables
(Meier and Maslanik, 2003; Van Woert et al., 2004; Lind-
say and Zhang, 2006; Stark et al., 2008), numerous studies
have tested updating sea ice state variables using the EnKF
data assimilation method (Lisæter et al., 2003; Barth et al.,
2015). These EnKF studies were tested both in a synthetic
observation framework referred to as observing system sim-
ulation experiments (OSSEs; Barth et al., 2015; Kimmritz
et al., 2018; Zhang et al., 2018) and using real observations
from remote sensing platforms (Sakov et al., 2012a; Mas-
sonnet et al., 2015). These studies found improvements in
both sea ice analyses and their corresponding forecasts re-
lated to the spatial sea ice concentration field but little im-
provement in sea ice thickness. In addition, studies have im-
proved the initialization of sea ice cover when updating sea

ice thickness via a multivariate framework when assimilat-
ing only sea ice concentration observations (Massonnet et al.,
2015; Sakov et al., 2012a). More recent studies have tested
the assimilation of sea ice thickness observations and found
further improvements to both sea ice thickness and sea ice
concentration states (Mathiot et al., 2012; Chen et al., 2017;
Fritzner et al., 2018; Mu et al., 2018; Fiedler et al., 2022).
While results from assimilating sea ice thickness observa-
tions are positive, they contain large observational uncertain-
ties because satellite remote sensing retrieval algorithms con-
tain large uncertainties due to input parameters and instru-
ment errors (Kwok and Cunningham, 2008; Zygmuntowska
et al., 2014; Tilling et al., 2016; Xie et al., 2016; Ricker et al.,
2017). Further research is needed to determine how to prop-
erly handle these uncertainties when assimilating sea ice ob-
servations. Lastly, there have been recent attempts to obtain
observed snow depth from satellites; however, the uncertain-
ties associated with these observations remain high (Maaß
et al., 2013; Rostosky et al., 2018). Because snow is closely
connected to albedo and sea ice melting, further understand-
ing of the impacts of assimilating snow depth observations
is needed. For example, Fritzner et al. (2019), found that as-
similating snow depth observations had positive effects on
short-term forecasts of snow depth and sea ice concentration.

This study uses different OSSEs to investigate how the
non-Gaussian nature of different sea ice fields impacts data-
assimilation-generated sea ice analyses. Using OSSEs pro-
vides an experimental framework to test the impacts of syn-
thetically generated observations in different data assimila-
tion configurations. This study expands on previous research
on sea ice data assimilation that was laid out by Zhang et al.
(2018). The OSSEs presented in this study will test different
experimental setups to investigate their impacts on sea ice
and snow states generated by data assimilation. These experi-
ments will investigate the impacts of post-processing updates
for snow on top of sea ice, different assimilated observation
combinations, and different data assimilation methods. This
study highlights the impacts of the non-Gaussian nature of
certain sea ice variables on the generation of sea ice analy-
ses when using an EnKF data assimilation method. Section 2
describes the sea ice model and the data assimilation experi-
mental setup along with a description of the different OSSEs
that were completed. Section 3 presents the results obtained
from the different OSSEs. Section 4 discusses the conclu-
sions and future work on this research.

2 Methods and experimental setup

2.1 CICE–DART data assimilation system

For this study, the Los Alamos sea ice model version 5
(CICE5; Hunke et al., 2015) is used to integrate the anal-
yses forward in time while using an ensemble Kalman fil-
ter (EnKF) data assimilation technique to generate analy-
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ses. The Data Assimilation Research Testbed (DART; Ander-
son et al., 2009) software was used to implement the EnKF.
Hereafter, we refer to this modeling configuration as CICE–
DART. The CICE5 model setup closely follows that in Zhang
et al. (2018), while the data assimilation setting will be dif-
ferent in the experiments.

2.1.1 DART

The data assimilation technique used in this study is the en-
semble adjustment Kalman filter (EAKF; Anderson, 2001),
which is a modified version of the ensemble Kalman fil-
ter (Burgers et al., 1998) and a variation of the determin-
istic ensemble square-root filter (Tippett et al., 2003). The
EAKF combines observations with an ensemble of short-
term model forecasts over a specific observation window to
produce an ensemble of the best estimate of the sea ice state.
One important aspect of the EAKF is its ability to use the
ensemble to estimate a flow-dependent background-error co-
variance, which differs from the static background-error co-
variance typically employed by variational techniques. Addi-
tionally, a non-Gaussian rank histogram filter (RHF, filter op-
tion 8 in DART; Anderson, 2010) is tested to compare against
the EAKF results. To reduce sampling errors due to limited
ensemble member size, covariance localization was applied
only in the horizontal direction. A Gaspari–Cohn fifth-order
polynomial was applied in the horizontal directions to limit
observation updates within a specified cutoff radius of 0.05
(i.e., ∼ 320 km; Gaspari and Cohn, 1999). Adaptive prior
covariance inflation was applied by “inflating” the ensem-
ble perturbations in prior background fields, increasing the
variance by pushing ensemble members away from the en-
semble mean (Anderson, 2007). Zhang et al. (2018) found a
reduction in Arctic sea ice area and volume errors when prior
inflation was applied in their study. Inflation damping is set
to 0.9 to help control the growth of the inflation factor for the
different model state variables. Any assimilated observation
type is allowed to update all model state variables during the
assimilation step unless otherwise noted. No cross-variable
localization was applied in this study.

2.1.2 CICE

CICE5 is the sea ice component within the Community Earth
System Model (CESM; Danabasoglu et al., 2020) that is used
to make climate projections. CICE5 simulates the evolution
of sea ice and snow through the representation of thermody-
namic and dynamical processes using an ice thickness dis-
tribution. The evolution of sea ice thickness, which is rep-
resented by the quotient of sea ice volume and sea ice area,
is accomplished by partitioning the sea ice pack distribution
within a grid cell into multiple thickness categories (Lip-
scomb, 2001). For this study, there are five thickness cate-
gories for both sea ice and snow with lower bounds of 0,
0.64, 1.39, 2.47, and 4.57 m. Respecting the category bounds

poses a challenge during the data assimilation step when up-
dating sea ice area and sea ice volume. Snow depth is also
partitioned into five categories. Each thickness category is di-
vided into multiple layers (both sea ice and snow if present)
to represent the evolution of sea ice temperature, salinity, and
enthalpy related to sea ice and snow. CICE was coupled to
a slab ocean model (SOM) that provides the ocean forcing
in the form of annually periodic prescribed ocean forcing
data (e.g., sea surface temperatures and ocean heat fluxes).
The atmospheric forcing data come from the Community At-
mosphere Model version 6 (CAM6)–Data Assimilation Re-
search Testbed ensemble reanalysis (Raeder et al., 2021) for
the time period of interest. The default namelist settings were
used in this study (Hunke et al., 2015), except for perturbing
several input CICE parameters, which will be discussed in
the next section.

2.2 Perfect model OSSEs

Given the uncertainties and potential biases of satellite-
retrieved sea ice and snow observations, this study applies
perfect model OSSEs to investigate non-Gaussian impacts
that could be introduced while assimilating these observa-
tions. Each ensemble consists of 80 CICE5 members because
there are 80 different CAM6–DART reanalysis atmospheric
forcing files. Each CICE5 ensemble member uses the same
SOM forcing. To increase the ensemble spread, three differ-
ent parameters impacting albedo, heat transfer through snow,
and the ability to move sea ice within the ocean were per-
turbed. The standard deviation of the dry snow grain radius
(Rsnw) controls the optical properties of snow and is one of
the key parameters that determines snow albedo in the so-
lar radiation parameterization (Briegleb and Light, 2007).
The thermal conductivity of snow (ksnw) directly impacts the
amount of heat that can be transferred through the snowpack,
thereby affecting the evolution of sea ice (Sturm and Mas-
som, 2017). The neutral ocean–ice drag coefficient (dragio)
controls the horizontal momentum exchange at the ice–ocean
interfaces, which determines the drag forces on the sea ice
(Lu et al., 2011). These three parameters were chosen be-
cause they are among the top parameters that drive variabil-
ity within CICE5 in both summer and winter (Urrego-Blanco
et al., 2016). See the “Data availability” section for access to
the perturbed parameter values used in this study. To achieve
the climatological state of sea ice and snow, a single member
is run for 40 years using periodic atmospheric forcing for the
year 2012. To build our 80-member ensemble, we first used
only 80 different atmospheric forcings to cycle over 2012
for 10 years to build in variability related to the atmosphere.
Each ensemble member is then run for an additional 15 years,
cycling over 2012, using the distinct atmospheric forcing and
parameter sets to generate free forecasts that can be used as a
reference case (Fig. 1). One of the free-forecast members is
randomly chosen as the simulated “truth”. For this study, the
free-forecast ensemble mean is negatively biased compared
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to the truth member for different sea ice and snow character-
istics. The free forecasts will provide a reference for compar-
ison with the different data assimilation experiments.

Since satellites cannot retrieve multi-category model
quantities, aggregate synthetic observations are generated
from the truth member to produce sea ice concentration
(SIC), sea ice thickness (SIT), snow depth (Dsnow), and sea
ice surface temperature (SIST). The multi-category model
state variables that are updated via data assimilation or post-
processing are sea ice area (Aice,n), sea ice volume (Vice,n),
and snow volume (Vsnow,n). When those multi-category
model state variables are summed over the different cate-
gories, they are referred to as Aice, Vice, and Vsnow. To com-
pute data assimilation updates, it is necessary to compute an
observation’s expected value from the model state, which is
called the forward operator. SIC is just the sum of the area
values in the different thickness categories computed as

SIC=
∑

n=1,5
Aice,n. (1)

The mean SIT of a grid cell is computed by summing the
sea ice volumes in the different thickness categories and then
dividing by the aggregated sea ice area as follows:

SIT=

∑
n=1,5Vice,n∑
n=1,5Aice,n

. (2)

The mean Dsnow of a grid cell is computed in the same fash-
ion as SIT, except using summed snow volumes,

Dsnow =

∑
n=1,5Vsnow,n∑
n=1,5Aice,n

. (3)

The mean SIST of a grid cell is the area-weighted mean tem-
perature across the different thickness categories on the sur-
face of the sea ice,

SIST=

∑
n=1,5SISTn ·Aice,n∑

n=1,5Aice,n
, (4)

where SISTn is the sea ice surface temperature for the differ-
ent thickness categories. In this OSSE framework, synthetic
observations are generated from the truth member using the
forward operators and are assimilated. Normally, synthetic
observations are created by adding a draw from a normal dis-
tribution with a mean of zero and a specified observation er-
ror standard deviation. This method was chosen to create the
synthetic sea ice surface temperature observations that were
assimilated. However, sea ice and snow quantities have sin-
gle (SIT, Dsnow) and double (SIC) bounds in their represen-
tations. Because of this, we will use single (SIT,Dsnow) and
double (SIC) truncated normal distributions when generating
the synthetic sea ice and snow observations that are assimi-
lated in our OSSEs. The observation error standard deviation
for SIC is 15 % of the true values of SIC (SICerror=SICtruth ·

0.15; Zhang et al., 2018) and 0.1 m for SIT (approximation of
future high-precision data; Zhang et al., 2018). While stud-
ies that use real SIT observations have varied their uncer-
tainties depending on the thickness value (Xie et al., 2018;
Cheng et al., 2023); due to the complexity of computing SIT
(Zygmuntowska et al., 2014), this study chose to use a sin-
gle value for SIT uncertainty. The SIT observation error of
0.1 m is a goal for future satellite platforms and is not the
observation error for current observing platforms. The ob-
servation error standard deviation is 10 % of the true values
of Dsnow (approximation of future high-precision data; Ros-
tosky et al., 2020) and 1.5 °C for SIST (Hall et al., 2015).
Due to the SIC observation error method, only synthetic SIC
observations greater than 0.01 (approximately the precision
found in passive microwave sea ice concentration observa-
tion files; Meier et al., 2021) are assimilated. Similarly, the
observation error for Dsnow has a lower bound of 0.005 m
for synthetic observations close to zero. The locations for all
synthetic observation types that are assimilated were based
on CryoSat-2 locations (locations measured every 10 s; for
more details on the locations, see CryoSat-2 Product Hand-
book at https://earth.esa.int/eogateway/documents/20142/
37627/CryoSat-Baseline-D-Product-Handbook.pdf, last ac-
cess: 10 December 2022), which provide the observational
network for testing (Fig. 2). While different sea ice observa-
tion networks in the real world usually do not match, the ob-
servation network chosen for this study was chosen because
of the easy experimental setup and fair comparison between
the synthetic observations that were assimilated in this study.

Six different experiments were completed to test differ-
ent observation combinations, data assimilation techniques,
and post-processing updates (Table 1). EAKF-ConcThick is
an extension of the work completed by Zhang et al. (2018)
where they only allowed observation increments to update
the sea ice area in the different categories, while updating
the sea ice and snow volume via post-processing. In EAKF-
ConcThick, we allow the category-based sea ice area and
volume to be updated independently by synthetic SIC and
SIT observations, while updating snow volume via post-
processing. The equations for post-processing snow volume
updates in the different categories are the following:

h
prior
snow,n =

V
prior
snow,n

A
prior
snow,n

, (5)

V
posterior
snow,n = A

posterior
ice,n ×h

prior
snow,n, (6)

where A
prior
ice,n is the prior sea ice area in the different thick-

ness categories, V
prior
snow,n is the prior snow volume in the dif-

ferent thickness categories, Aposterior
ice,n is the data-assimilation-

updated sea ice area in the different categories, and h
prior
snow,n is

the prior snow thickness values in the different categories. In
EAKF-ConcThickSnow, snow volume is no longer updated
by post-processing, and assimilation of synthetic Dsnow is
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Figure 1. Daily total Arctic (a) sea ice area, (b) sea ice volume, and (c) snow volume from CICE5 free-forecast simulations. Each gray line
represents an individual ensemble member, the black line represents the ensemble mean, and the red line represents the truth member. The
truth member is a randomly selected ensemble member. Daily biases of the total Arctic (d) sea ice area, (e) sea ice volume, and (f) snow
volume where the black line represents the ensemble mean difference compared to the truth. The dashed black line is the zero reference line.
The free-forecast period is for the year 2013.

Table 1. List of CICE–DART OSSEs with the different configurations.

Experiments Assimilated Modified forward Post-processed Assimilation Data-assimilation-
observations operator states algorithm updated state vector

EAKF-ConcThick
SIC

No
Category

EAKF
Category sea ice area

SIT snow volume Category sea ice volume

EAKF-ConcThickSnow
SIC

No No EAKF
Category sea ice area

SIT Category sea ice volume
Dsnow Category snow volume

EAKF-ThickSnow
SIT

No No EAKF
Category sea ice area

Dsnow Category sea ice volume
Category snow volume

RHF-ConcThickSnow
SIC

No No RHF
Category sea ice area

SIT Category sea ice volume
Dsnow Category snow volume

EAKF-ModifiedFO
SIT

Yes No EAKF
Category sea ice area

Dsnow Category sea ice volume
Category snow volume

EAKF-SIST
SIT

No No
EAKF Category sea ice area

Dsnow Category sea ice volume
SIST Category snow volume

included in the assimilated observation subset. Since real-
world snow depth observations still have their limitations
(Rostosky et al., 2018; Fritzner et al., 2019), the synthetic
snow depth observations generated for this OSSE will test the
impacts on when high-quality snow observations are avail-
able year-round in the future. All assimilated synthetic ob-
servations (SIC, SIT, and Dsnow) update all category-based
model state variables (Aice,n, Vice,n, and Vsnow,n). To test
the non-Gaussian effects of the synthetic SIC observations,

EAKF-ThickSnow only assimilates synthetic SIT and Dsnow
while allowing the category-based sea ice area, sea ice vol-
ume, and snow volume state variables to be updated from
the observation increments. RHF-ConcThickSnow investi-
gates the impacts of using a non-Gaussian data assimila-
tion method, the rank histogram filter, when working with
the non-Gaussian sea ice and snow variables in the CICE
model. EAKF-ModifiedFO investigates the impacts of hav-
ing sea ice thickness and snow depth output from CICE in-
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Figure 2. A snapshot example of the spatial locations of the OSSE synthetically generated (a) sea ice area, (b) sea ice thickness, (c) snow
depth, and (d) sea ice surface temperature observations that are assimilated. The observation locations are from CryoSat-2 latitude and
longitude ground tracks. The color fill is the ensemble mean of the sea ice area, and the dots are the observation locations along with their
associated values.

stead of having the forward operators within DART compute
these quantities. This arises from the fact that prior inflation
is applied, which can push either the sea ice area or the sea
ice volume below zero. Since computing sea ice thickness or
snow depth is the division of either sea ice or snow volume by
the sea ice area, this could lead to shuffling of the distribution

if values become negative. Finally, EAKF-SIST tests the im-
pacts of assimilating additional synthetic SIST observations
to further improve the updates of sea ice and snow states.
While synthetic SIST observations are assimilated, sea ice
surface temperatures in the different thickness categories are
not updated from the data assimilation step.
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Due to the bounds related to sea ice and snow state vari-
ables, there are different conditions under which special
treatment is needed to ensure that the respected bounds are
met. SIC (summed sea ice area across the categories) must re-
main between 0 and 1. Similarly, sea ice and snow volumes
(summed across the categories) must remain above zero. If
negative values occur for SIC or for the volumes, all cate-
gories are set to zero. Additionally, category-based sea ice
area values are scaled if the SIC exceeds 1 after the assimi-
lation updates. In the event that SIC exceeds 1, the scaling of
the category-based sea ice area is as follows:

Aice,n = Aice,n ·
1

SIC
. (7)

In the case where SIC is within the bounds but individual cat-
egories become negative, those categories are set to zero and
the remaining nonzero categories are reduced proportionally
to compensate for the negative value. Lastly, special care is
taken to account for the cases where SIC is greater than zero
but sea ice volume in all categories is zero. This can occur
during data assimilation updates to the category-based sea
ice volume (updates remove all the sea ice volume) or if the
data assimilation updates create some amount of sea ice area
but the sea ice volume remains zero. A new sea ice volume
is computed by multiplying the average thickness value al-
lowed in the associated category (0.32, 1.01, 1.93, 3.51, or
6.95) by the sea ice area for the category.

The same initial conditions used to generate the free fore-
casts were used for the experiments listed in Table 1. The free
forecasts provide a reference to the amount of variability that
was generated during the spinup process (Fig. 1). All exper-
iments were initialized on 1 January 2013, and the cycling
period was for the entire year of 2013. In all experiments,
observations were assimilated at a daily interval.

2.3 Model verification metrics

Time series of total sea ice area, sea ice volume, and snow
volume will be the ensemble mean forecast quantities used to
evaluate CICE–DART performance over the cycling period.
The equations for computing total sea ice area and volume
are as follows:

total-sea-ice-area(t)=
∑

n=1,j

(SIC(t)j · grid-cell-areaj ), (8)

total-sea-ice-volume(t)=
∑

n=1,j

(Vice(t)j · grid-cell-areaj ), (9)

where t is time, j is the total number of grid points in the
Northern Hemisphere, and grid-cell-area is the area of the
grid cell. Total snow volume is computed in the same way
as total sea ice volume but instead using snow volume. The
spatial probability score (SPS) is computed to investigate po-
tential sea ice edge errors over the cycling period (Goessling
and Jung, 2018). Following Goessling and Jung (2018), the

ice edge is defined using the 15 % sea ice concentration con-
tour in this study. Due to data storage issues, SPS could not
be calculated for EAKF-SIST. Additionally, ensemble mean
spatial biases will be computed for SIC, sea ice volume, and
snow volume over different cycling periods. Welch’s t test
will be applied to test for significant biases (Welch, 1947).
The ensemble mean was chosen because the statistics were
nearly identical regardless of whether the ensemble mean or
ensemble median was used.

Mean absolute bias (MAB) and mean square error (MSE)
will be computed over the time series of total sea ice area,
sea ice volume, and snow volume for additional performance
evaluation. The equations for MAB and MSE are as follows:

MAB=
N∑

t=1
|Xm

i −Xt
i |, (10)

MSE=
N∑

t=1
(Xm

i −Xt
i )

2, (11)

where i is the time index, N is the total number of times (i.e.,
number of days), Xm

i is the ensemble mean forecast quan-
tity (e.g., total sea ice area), and Xt

i is the true value for the
forecast quantity. The integrated ice edge error (IIEE) is an-
other forecast metric that is applied to the ensemble mean,
which is analogous to SPS when using a single determinis-
tic forecast (Goessling et al., 2016). IIEE evaluates potential
sea ice edge differences between the ensemble mean and the
truth. IIEE is more suitable for user forecast evaluation of
the sea ice edge compared to the traditional sea ice extent
(Tietsche et al., 2014). The IIEE is the sum of the area grid
boxes where the ensemble mean and the truth disagree on
whether sea ice is present (overprediction; SICtruth = 0 and
SICensemble mean > 0) or absent (underprediction, SICtruth >

0 and SICensemble mean = 0). Similar to previous studies com-
puting IIEE, an SIC threshold of 15 % is used to determine
whether a grid cell is identified as having sea ice (Goessling
and Jung, 2018; Zampieri et al., 2018). An attractive feature
of IIEE is that it can be decomposed into an absolute ex-
tent error (AEE) and a misplacement error (ME). AEE is the
absolute difference (|overprediction – underprediction|) be-
tween predictions, which can help determine whether there
is a bias for overpredicting or underpredicting sea ice cover-
age. ME is the misplacement error (2×min(overprediction
and underprediction)), reflecting whether there is too much
sea ice in one location and too little in another. IIEE, along
with its components AEE and ME, will be computed daily.
Welch’s t test was used to determine whether there were
significant differences between MAB, MSE, and IIEE val-
ues between experiments. Finally, Spearman correlations are
computed between the perturbed parameters and different
CICE model outputs.
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Figure 3. (a) Daily Arctic spatial probability score for the free forecast, EAKF-ConcThick, EAKF-ConcThickSnow, and EAKF-ThickSnow.
Daily biases of the Arctic total (b) sea ice area, (c) sea ice volume, and (d) snow volume from the free forecast, EAKF-ConcThick, EAKF-
ConcThickSnow, and EAKF-ThickSnow. Dashed gray lines are the zero reference line.

3 Results and discussion

3.1 Optimization of sea ice and snow data assimilation

The first three experiments investigate which assimilated
synthetic observation subset produces the most accurate fore-
casts for both sea ice and snow. All the experiments have
similar skill in predicting the sea ice edge and are better
than the free forecast (Fig. 3a). However, there is a period
during August and September when the experiments assim-
ilating SIC, EAKF-ConcThick, and EAKF-ConcThickSnow
have smaller errors in predicting the sea ice edge. Daily bi-
ases of total sea ice area, sea ice volume, and snow volume
are computed throughout the cycling period to compare the
performance of the experiments to the truth and free fore-
casts (Fig. 3b–d). Compared to the free forecast, EAKF-
ConcThick performs better for both total sea ice area and
sea ice volume. However, total sea ice area and sea ice vol-
ume were negatively biased from the start of the melt sea-

son in May until the re-freeze in September. Total snow vol-
ume for EAKF-ConcThick is comparable to the free fore-
casts. This means that the post-processing updates for the
snow state variable are not as accurate compared to the sea
ice state variables, which are updated directly from the mul-
tivariate data assimilation step. For EAKF-ConcThickSnow,
there is little impact on biases associated with sea ice quan-
tities. The biases associated with total snow volume are re-
duced in the EAKF-ConcThickSnow compared to EAKF-
ConcThick and the free forecasts. This highlights the poten-
tial impacts snow depth observations could have if assim-
ilated year-round, which due to limitations is not possible
(Rostosky et al., 2018). The negative biases found for total
sea ice and sea ice volume during the summer for the first two
experiments are now near zero for EAKF-ThickSnow. Im-
provements in total snow volume for EAKF-ThickSnow are
isolated to the start of the melt season; however, the biases are
similar to the first two experiments after this period. Regard-
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less of these improvements, total snow volume is negatively
biased throughout the cycling period for experiments where
Dsnow observations are assimilated. Additionally, the biases
for total snow volume are larger during the winter seasons
leading up to June and then approach zero thereafter for ex-
periments where Dsnow observations are assimilated. This re-
sult could mean that it takes a seasonal cycle to pull ensemble
snow values closer to the truth. Removing SIC observations
from the assimilated observation subset eliminates an obser-
vation that is doubly bounded and whose values approach
both of the bounds. Since SIC observations are more likely
to be affected by their associated bounds (the bulk of SIC ob-
servations are near 1 unless near the marginal ice zone), this
could be the driving factor for the poor forecasts in the first
two experiments.

Temporal forecast metrics are computed over the cy-
cling period to pinpoint which experiment is more accu-
rate (Fig. 4). EAKF-ConcThick and EAKF-ConcThickSnow
have the lowest total IIEE and are significantly different from
the free forecast and EAKF-ThickSnow. This means that
both EAKF-ConcThick and EAKF-ConcThickSnow pro-
duce a more accurate forecast of sea ice coverage over the cy-
cling period. This might seem inconsistent since the EAKF-
ThickSnow daily biases were smaller. EAKF-ThickSnow has
sea ice area MSE and MAB that are lower and significantly
different from the other experiments and the free forecast.
This means that removing the SIC observations provided
a more accurate forecast of the sea ice area; however, this
did have a negative impact on predicting the sea ice edge
in EAKF-ThickSnow. This indicates that SIC observations
play an important role in maintaining the sea ice edge close
to the truth. Additionally, all experiments performed bet-
ter for sea ice volume compared to the free forecast, with
EAKF-ThickSnow being the most accurate. For snow vol-
ume, EAKF-ConcThick is not statistically better than the
free forecast, indicating that post-processing snow updates is
not a favorable method. Once again, EAKF-ThickSnow per-
forms best for snow volume even though SIC observations
are not assimilated. While not assimilating SIC observations
improves most forecast metrics, these observations are cru-
cial to accurately represent the sea ice edge.

While EAKF-ThickSnow provided the most accurate fore-
casts for aggregated quantities such as total sea ice area,
it is unclear where those improvements occurred spatially
over the Arctic at the start of the melt season. To gain
more insight into the improved results, May-through-June-
averaged spatial biases of SIC, Vice, and Vsnow are com-
puted for the free forecast and for each of the first three
experiments (Fig. 5). For SIC, there are significant biases
for the free forecast where the SIC values are too large
over the central Arctic and too small near the marginal ice
zone. EAKF-ConcThick and EAKF-ConcThickSnow show
predominantly significant negative biases over the sea ice for
SIC, whereas EAKF-ThickSnow reduces the spatial biases to
near zero. The negative SIC spatial bias over the central Arc-

tic explains why the total sea ice area for EAKF-ConcThick
and EAKF-ConcThickSnow performed poorly compared to
EAKF-ThickSnow. However, there are areas of larger biased
values near the marginal ice zone for EAKF-ThickSnow,
meaning it was less accurate in representing the sea ice edge.
While all experiments reduced the magnitude of the Vice spa-
tial bias, there is still an overall significant negative bias for
EAKF-ConcThick and EAKF-ConcThickSnow. The spatial
biases for EAKF-ThickSnow are near zero, and there are
essentially no areas of significant bias. For Vsnow, there are
differences between the spatial biases for EAKF-ConcThick
and EAKF-ConcThickSnow, highlighting the benefits of as-
similating Dsnow observation over post-processing Vsnow up-
dates. In EAKF-ThickSnow, there is an overall reduction in
the significant negative biases over the central Arctic com-
pared to EAKF-ConcThickSnow. In EAKF-ConcThick and
EAKF-ConcThickSnow, the SIC observations have a nega-
tive impact on both the observed and the non-observed model
state variables. Removing SIC observations from the assimi-
lated observation subset reduced the spatial coverage of sig-
nificant biases for all model state variables.

An analysis increment indicates how the observations are
pushing or pulling model state variables. Evaluating analy-
sis increments will help determine how the assimilation of
synthetic SIC observations impacts the different data assim-
ilation experiments. For EAKF-ThickSnow, there is a reduc-
tion in the magnitude of the spatial analysis increments at
the start of the melt season compared to that for EAKF-
ConcThick and EAKF-ConcThickSnow (Fig. 6a). The anal-
ysis increment reduction is mainly located over the central
part of the Arctic where SIC values for all ensemble mem-
bers are close to 1. This implies that the assimilation of
SIC observations leads to low-biased SIC analyses. The SIC
analysis increments become more similar across the exper-
iments as one moves away from the central Arctic toward
the marginal ice zone. The analysis increment patterns and
magnitudes near the marginal ice zone for EAKF-ConcThick
are less different than one might expect because of the in-
crease in IIEE. However, these analysis increments are av-
eraged from May through June; therefore, the IIEE might
be detecting sea ice edge errors at different times through-
out the cycling period. This is similar for Vice, where there
is a reduction in the analysis increment magnitude over the
central Arctic for EAKF-ThickSnow compared to EAKF-
ConcThick and EAKF-ConcThickSnow (Fig. 6b). For Vsnow
analysis increments, there is a flip in the sign between EAKF-
ConcThick and EAKF-ConcThickSnow (Fig. 6). The nega-
tive Vsnow analysis increments in EAKF-ConcThick are con-
nected to the SIC analysis increments due to the equations
for post-processing (Eqs. 5 and 6). Since SIC analysis incre-
ments are mainly negative over the central Arctic, this would
also lead to negative Vsnow analysis increments over this re-
gion due to the post-processing method. The differences in
Vsnow analysis increments between EAKF-ConcThickSnow
and EAKF-ThickSnow are small, indicating that the removal
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Figure 4. The (a) IIEE, (b) MAB, and (c) RMSE of sea ice area, sea ice volume, and snow volume from the free forecast, EAKF-ConcThick,
EAKF-ConcThickSnow, and EAKF-ThickSnow. Each index is computed using the ensemble mean and over the entire cycling period. Dots
represent any pairs of experiments that are significantly different from a different experiment using Student’s t test. Dot colors correspond to
the different experiments.

of synthetic SIC observations from the assimilated subset
does not have a negative impact on the adjustments. Over-
all, EAKF-ThickSnow provides the best setup for sea ice
and snow data assimilation. Even though there was a slightly
higher IIEE, the removal of the synthetic SIC observations
from the assimilated observation subset did provide better
results. Further investigation is needed to understand the rea-
son behind the persistent negatively biased total snow vol-
ume compared to the truth.

3.2 Further discussion of sea ice data assimilation

The removal of SIC as an assimilated synthetic observation
improved forecasts of total sea ice; however, forecasts of the
sea ice edge were less accurate according to the total IIEE
and SPS. This result indicates that, near the marginal ice
zone, there are benefits to assimilating SIC observations and
that SIT observations provide poor multivariate updates for
Aice,n. Three additional experiments were completed to in-

vestigate the impacts on sea ice when using a non-Gaussian
RHF, modified forward operators for synthetic thickness ob-
servations, and assimilation of synthetic SISTs. Each addi-
tional experiment is compared to EAKF-ThickSnow. Sea ice
edge errors are lower in RHF-ConcThickSnow, and the er-
rors are larger in EAKF-ModifiedFO compared to EAKF-
ThickSnow (Fig. 7a). Once again, this result highlights im-
provements when assimilating SIC observations near the sea
ice edge. RHF-ConcThickSnow performs worse than EAKF-
ThickSnow during the summer, according to daily biases
of total sea ice area, sea ice volume, and snow volume
(Fig. 7b–d). The non-Gaussian RHF did not handle the SIC
observations better. Compared to EAKF-ThickSnow, EAKF-
ModifiedFO and EAKF-SIST have similar daily biases for
total sea ice and snow volume but not for total sea ice area.
EAKF-ModifiedFO and EAKF-SIST have persistent larger
daily biases during summer compared to EAKF-ThickSnow.
There does appear to be a slight improvement in total snow

The Cryosphere, 18, 2875–2896, 2024 https://doi.org/10.5194/tc-18-2875-2024



C. Riedel and J. Anderson: Exploring non-Gaussian sea ice characteristics via OSSEs 2885

.

Figure 5. Ensemble mean spatial biases of (a) SIC, (b) Vice, and (c) Vsnow averaged over May–June for the free forecast, EAKF-ConcThick,
EAKF-ConcThickSnow, and EAKF-ThickSnow. Stippling represents significant biases at the 95 % confidence interval using Welch’s t test.
The dashed black line is the sea ice edge (0.15 SIC).

volume for EAKF-SIST compared to EAKF-ThickSnow dur-
ing May; however, there are still negative biases throughout
the cycling period.

RHF-ConcThickSnow does the best job representing sea
ice coverage since its total IIEE is the lowest, and it is
significantly different from the other experiments (Fig. 8).
RHF-ConcThickSnow assimilates SIC observations, which
is likely why it is similar to our previous result from
EAKF-ConcThickSnow (compare Fig. 4a to Fig. 8a). EAKF-
ModifiedFO and EAKF-SIST essentially have the same to-
tal IIEE, which is statistically worse than EAKF-ThickSnow.
Modification of the forward operator along with assimilat-
ing SIST observations does not improve the representation
of sea ice coverage. For total sea ice area and sea ice vol-
ume, RHF-ConcThickSnow has the largest aggregated errors
that are significantly different from the other experiments
(Fig. 8b, c). This result is similar to EAKF-ConcThickSnow,
where SIC observations were assimilated. While EAKF-
ThickSnow does the best job representing the total sea ice

area and sea ice volume, one thing that needs to be men-
tioned is that EAKF-SIST uses a modified forward opera-
tor. Since the sea ice statistics appear very similar between
EAKF-ModifiedFO and EAKF-SIST, the modified forward
operator could explain why the results for EAKF-SIST are
worse than those for EAKF-ThickSnow.

Evaluating SIC over the start of the melt season (May–
June) reveals that RHF-ConcThickSnow mostly has signif-
icant negative biases compared to the truth (Fig. 9a). This
result is similar to EAKF-ConcThickSnow, where the EAKF
is used instead of the RHF. Compared to EAKF-ThickSnow,
there are larger positive SIC biases for EAKF-ModifiedFO
and EAKF-SIST near the marginal ice zone. These biased
areas are mainly located in Baffin Bay, the Greenland Sea,
and the Barents Sea. The poor representation of the marginal
ice zone for EAKF-ModifiedFO and EAKF-SIST could ex-
plain the larger total IIEE compared to EAKF-ThickSnow.
RHF-ConcThickSnow has significant negative sea ice vol-
ume biases over most of the sea ice pack (Fig. 9b). Again, this
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Figure 6. Normalized spatial analysis increments of (a) SIC, (b) Vice, and (c) Vsnow averaged over May–June for EAKF-ConcThick, EAKF-
ConcThickSnow, and EAKF-ThickSnow. Analysis increments of SIC, Vice, and Vsnow were normalized using the largest absolute value from
across the three experiments. The dashed black line is the sea ice edge (0.15 SIC).

agrees with the spatial biases for EAKF-ConcThickSnow
over this period, further showing that switching to the RHF
over the EAKF did not help alleviate the impacts of the SIC
observations. The spatial biases of sea ice volume for EAKF-
ModifiedFO and EAKF-SIST closely resemble those found
in EAKF-ThickSnow, except near the marginal ice zone. The
modified forward operator might introduce poor marginal
ice zone updates without the constraint of SIC observations
in this region. Overall, switching the data assimilation filter
type did not resolve the issues related to assimilating SIC ob-
servations, and there are potential issues with using the mod-

ified forward operator near the marginal ice zone. However,
the spatial biases are similar over most of the central Arctic,
indicating that further investigation is needed to determine
the negative impacts of the modified forward operator.

3.3 Simplified data assimilation experiment

To further investigate the poor results obtained when assim-
ilating SIC observations, a simplified data assimilation ex-
periment was set up. This simplified DA experiment mimics
SIC during wintertime over the North Pole, meaning that the
true SIC does not change over time. With a constant truth
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Figure 7. Same as Fig. 3 but for EAKF-ThickSnow, RHF-ConcThickSnow, EAKF-ModifiedFO, and EAKF-SIST.

value that does not change, synthetic observations are created
that will be assimilated over the cycling period. The true SIC
value is set to 0.99, and its corresponding observation error
will vary between 0.1485 (the value if using the same method
as the OSSE experiments), 0.07425, and 0.037125. Two dif-
ferent filters, EAKF and RHF, will be tested using different
observation error specifications. The initial ensemble spread
has a standard deviation of 0.0142. No prior inflation was ap-
plied in these experiments. Six mini-experiments were com-
pleted using a combination of different filter types (EAKF
or RHF) and different specified observation errors. The ex-
periments were cycled 5000 times, assimilating the synthetic
observations generated from the truth using a truncated nor-
mal distribution. These experiments work with SIC directly,
meaning that there are no thickness categories as in CICE.
This means that the mapping between observation space and
state space is linear, further simplifying this data assimilation
experiment.

For all experiments, the prior ensemble mean drifts away
from the true value and moves toward the average observa-

tion value over the cycling period (Fig. 10). The average ob-
servation value depends on the observation error specifica-
tion: a smaller error leads to an average observation closer to
the truth. For the largest observation error, the EAKF drifts
toward the average observation value at a quicker rate com-
pared to the RHF (Fig. 10a, d). The slower rate exhibited
by the RHF could mean that the filter weights the observa-
tions less compared to the EAKF. Even as the observation
errors decrease, both the EAKF and the RHF move away
from the truth and drift toward the average observation value
(Fig. 10b, c, e, and f). These experiments highlight that a
reduction in the observation error still results in the prior en-
semble being negatively biased when using distributions and
observations near a bound.

The fact that the prior ensemble mean moves away from
the true value regardless of filter type and observation error
value demonstrates that our data assimilation solution is bi-
ased. This is because our observation error distribution is a
truncated normal distribution, whereas the observation likeli-
hood for EAKF and RHF is assumed to be normal. Applying
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Figure 8. Same as Fig. 4 but for EAKF-ThickSnow, RHF-ConcThickSnow, EAKF-ModifiedFO, and EAKF-SIST.

a non-Gaussian distribution for observation errors while us-
ing a Gaussian observation likelihood can lead to erroneous
observation impacts, biasing analysis estimates (Pires et al.,
2010; Fowler and Jan Van Leeuwen, 2013). This negative
bias is exacerbated by the effects of prior inflation in our
OSSEs by increasing prior variance, which further weights
the observations. A better choice might be a combination of
distributions representing the prior state and the observation
errors more appropriately, as laid out in Anderson (2022).

3.4 Further discussion of snow data assimilation

Regardless of the first three experiments, the daily biases for
snow volume are negative throughout much of the entire cy-
cling period compared to the truth (Fig. 3d). Even the daily
biases for the additional experiments are mainly negative
throughout the cycling period (Fig. 7d). Further investigation
is needed to fully understand why the snow volume is neg-
atively biased regardless of the experimental setup. EAKF-
ThickSnow will be further evaluated to investigate the reason
for the low bias in snow volume. Since the ocean forcing is
the same across ensemble members, the atmospheric forcing

is evaluated for the ensemble mean. Breaking down the indi-
vidual atmospheric heat fluxes, shortwave radiation has the
largest bias compared to the truth (Fig. 11a). The other at-
mospheric heat fluxes have smaller and near-zero biases for
most of the cycling period. The positive shortwave heat flux
bias occurs during sunrise over the Arctic, which also cor-
responds to the period in EAKF-ThickSnow where the daily
biases for snow volume are the largest (Fig. 3c). The spread
in the absorbed shortwave heat flux grows during the onset
of summer, which is during the start of the snowmelt sea-
son (Fig. 11b). On average, the ensemble has absorbed too
much incoming shortwave radiation compared to the truth.
Interestingly, the spread of the absorbed shortwave heat flux
collapses at the start of July, when the snow on top of the
sea ice is at its minimum (Fig. 3c). One feature that can im-
pact the absorbed shortwave radiation and is connected to
snow cover is surface albedo (Fig. 11c). During the same
period, the spread in the absorbed shortwave heat flux in-
creases, and the spread in the surface albedo increases. The
spread in the surface albedo then collapses, similar to the in-
coming shortwave radiation heat flux, near the beginning of
July. The surface albedo is, on average, too small compared
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Figure 9. Same as Fig. 5 but for EAKF-ThickSnow, RHF-ConcThickSnow, EAKF-ModifiedFO, and EAKF-SIST.

to the truth, which could be the reason for the positive bias in
the absorbed shortwave radiation. Lastly, the ensemble mem-
bers almost appear to be sorted by both absorbed shortwave
radiation and mean surface albedo, hinting at something sys-
tematic driving these quantities.

One potential reason that could be driving the negative bi-
ases found for the ensemble mean snow volume is that the
snowfall originating from the atmospheric forcing file for the
truth member is an outlier. This does not appear to be the
case when comparing daily biases of snowfall with the en-
semble mean (Fig. 11d). The snowfall biases for the ensem-
ble mean are near zero and fluctuate around the zero line,
indicating that there is no clear systematic difference from
the truth. One issue that has not been discussed is the role
that the CICE-perturbed parameters could play in snow evo-
lution. Perturbed parameters have been used over the years
to create more spread in atmospheric models (Murphy et al.,
2004; Stainforth et al., 2005; Christensen et al., 2015; Orth
et al., 2016) where the system is more chaotic. However,
the impact that the perturbed parameters would have on a
less-chaotic system such as the cryosphere is unclear. Con-

cerning total snow volume, there are larger and more signif-
icant correlations between the Rsnw parameter compared to
the other perturbed parameters throughout the cycling period
(Fig. 12a). The positive correlations indicate that larger stan-
dard deviations of the dry snow grain radius lead to greater
total snow volume. This connection is a result of the larger
standard deviations of the dry snow grain radius resulting in
a higher albedo, reflecting more incoming shortwave radi-
ation (Hunke et al., 2015). Looking at snowmelt, there are
negative and significant correlations during the melt season
for the Rsnw parameter, while the other parameters have few
significant correlations (Fig. 12b). This means there is more
snowmelt for lower standard deviations of the dry snow grain
radius, resulting in more absorbed shortwave radiation due
to a lower surface albedo. The Rsnw parameter for the truth
member is located above the 75th percentile compared to the
rest of the perturbed Rsnw parameters (Fig. 12c). Even with
snow assimilation updates, the impact of the perturbed Rsnw
parameter might play a larger role in snow evolution. Due to
this fact, it is not surprising to find that the ensemble mean
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Figure 10. Prior ensemble mean (blue line) time series of SIC for experiments using (a–c) EAKF and (d–f) RHF. Each experiment was
completed with the observation error set to (a, d) 0.1485, (b, e) 0.07425, or (c, f) 0.037125. The red line represents the average observation
value over the cycling period. The black line represents the true value over the cycling period.

is negatively biased compared to the truth for total snow vol-
ume.

4 Conclusions

To advance our understanding of the global climate, it is crit-
ical to improve our representation of the different underlying
Earth-system components within our coupled numerical cli-
mate models. One important Earth-system component – the
cryosphere – has gathered recent attention due to declining
Arctic summer sea ice and its link to Arctic amplification.
Data assimilation methods such as the ensemble Kalman fil-
ter (EnKF) are one way to improve the representation of sea
ice states by exploiting information from observations taken
from satellites. However, the formulation of the EnKF has
Gaussian assumptions, and most state variables representing
sea ice have some form of boundedness, which can lead to
non-Gaussian distributions near those bounds. This study in-
vestigates the data assimilation impacts of the non-Gaussian
nature of sea ice and snow variables on the generation of
analyses within different observing system simulation exper-
iments (OSSEs). The different OSSEs presented in this study

investigated which data assimilation setup provided the most
accurate representation of sea ice and snow when dealing
with non-Gaussian observations and state variables.

In this study, a sea ice model called CICE is coupled to
the ensemble data assimilation software provided by DART
to obtain a sea ice modeling system called CICE–DART.
CICE–DART is used to conduct OSSEs to test different data
assimilation configurations and the assimilation of different
sea ice and snow observation subsets synthetically generated
from a truth member. Six different experiments were com-
pleted to test different observation combinations, data assim-
ilation techniques, and post-processing updates (Table 1).

The first three experiments explore the impact of differ-
ent assimilated synthetic observation subsets on the genera-
tion of the most accurate forecasts for both sea ice and snow
states. According to the daily biases and aggregated statistics,
EAKF-ThickSnow is more accurate when compared to the
truth for sea ice area, sea ice volume, and snow volume. This
highlights the negative impacts that SIC observations have
on forecasts when they are assimilated in EAKF-ConcThick
and EAKF-ConcThickSnow. This result contradicts previous
studies that found positive impacts from assimilating SIC
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Figure 11. (a) Ensemble mean daily biases of sea ice accumulated atmospheric heat fluxes for EAKF-ConcThick compared to the truth. The
plotted atmospheric heat flux components include the shortwave heat flux (black line), sensible heat flux (blue line), net longwave heat flux
(orange line), and latent heat flux (green line). The dashed gray line represents the zero reference line. (b) Time series of sea ice accumulated
shortwave heat flux for EAKF-ConcThick. The gray lines are the individual ensemble members, the black line is the ensemble mean, and the
blue line is the truth. The dashed gray line represents the zero reference line. (c) Same as panel (b) but for the mean surface albedo over sea
ice. (d) Daily biases of sea ice accumulated snowfall for EAKF-ConcThick compared to the truth. The gray lines are the individual ensemble
members, and the black line is the ensemble mean.

observations (Sakov et al., 2012a; Massonnet et al., 2015;
Posey et al., 2015). However, this result could be linked to
differences in the observation error specification chosen for
SIC observations in the different studies. In our study, early
springtime SIC truth values are still close to 1, maximiz-
ing their observation error (15 % of the truth value), which
leads to synthetic SIC observations being drawn further be-
low the truth due to the bound at 1. In addition, the prior
spread increases because of the onset of springtime melt and
prior inflation. Combining the low-bias observations with the
increase in the prior spread leads to an enhancement of the
non-Gaussian effects during early springtime. A similar but
opposite effect (high-biased SIC observations) would be ob-
served during winter; however, prior ensemble spread in the

modeled SIC fields is smaller, resulting in a lower weighting
of SIC observations. While potentially different from other
studies, our chosen SIC observation error specification in-
tensified the non-Gaussian effects of assimilating SIC ob-
servations while also showing the potential impact accurate
SIT observations can have during data assimilation multi-
variate updating. Interestingly, SIC observations do provide
positive updates in the marginal ice zone, as shown by SPS
and total IIEE being lower in EAKF-ConcThick and EAKF-
ConcThickSnow. Because of positive updates in the marginal
ice zone, it would be optimal to assimilate SIC observations
within the data assimilation system.

Additional OSSEs were performed to further investigate
potential data assimilation improvements for sea ice (Ta-
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Figure 12. (a) Daily correlations between CICE-perturbed parameters and total snow volume over the Arctic. Correlations are computed
using a Spearman’s rank correlation method where both the raw correlations (Raw) and significant correlations with confidence at 99 % (Sig.)
are shown. (b) Same as panel (a) but for total snowmelt over the sea ice in the Arctic. (c) Sorted perturbed Rsnw parameter values for each
ensemble member. The red bar indicates the truth member. The black line is the median, and the two dashed lines represent the interquartile
range.

ble 1). A non-Gaussian RHF was tested since it was devel-
oped for non-Gaussian situations. The results showed little
improvement over the EAKF when assimilating SIC obser-
vations. This is likely linked to the RHF making some non-
Gaussian assumptions on the tails and an assumed normal
likelihood when the distribution is not bounded. The modifi-
cation to the forward operators did not improve sea ice data
assimilation, especially regarding sea ice edge errors. This
could mean that there are few instances of shuffling the sea
ice thickness distribution due to prior inflation. Additionally,
the multivariate update between sea ice thickness observa-
tions and sea ice area might be the reason for the increase in
sea ice edge errors. Lastly, assimilating SISTs did not lead to
increased skill for sea ice variables. The correction between
the SISTs and sea ice model variables might not be signifi-
cant, leading to little improvement.

To better understand the assimilation impacts due to the
SIC observations, a simplified data assimilation experiment
was completed. This simplified experiment mimics central
Arctic SIC during the wintertime, meaning that the truth does
not change. Regardless of the filter type or observation error
value, the prior ensemble mean moves away from the truth

and closer to the average observation value during the cy-
cling period. These experiments verified that near a bound,
the performance of the EAKF and the RHF is suboptimal.
We believe that the suboptimal performance is linked to us-
ing a truncated normal distribution as the observation error
distribution while the observation likelihood for the EAKF
and RHF is assumed to be normal. Future projects focusing
on sea ice data assimilation might want to consider a differ-
ent choice for the observation likelihood specification, simi-
lar to those laid out in Anderson (2022). This would include
using distributions for the prior probability density function
(PDF) and observation likelihood that are similar to the ob-
servation error distribution and consider the bounds more ap-
propriately (e.g., a truncated Gaussian distribution).

The evaluation of the additional OSSEs was performed
to investigate their impact on snow updates. The improve-
ments associated with using the non-Gaussian RHF over the
EAKF were small for snow volume. This means that the non-
Gaussian impacts from the SIC observations were negative
for snow volume updates. Additionally, the modified forward
operators have little impact on snow volume updates. How-
ever, there is a slight improvement in the snow volume when
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SISTs are assimilated. This improvement occurred during
May and not over a specific area of sea ice. This could mean
that the connections between SISTs and snow are more sig-
nificant than those between SISTs and sea ice. Regardless,
all additional experiments still experienced a negative bias
throughout the entire cycling period. Further investigation re-
vealed that one of the perturbed parameters could be driving
the negative bias for snow volume. Correlations were larger
and significant between snow variables and the representa-
tion of the dry snow grain radius size (Rsnw) within our en-
semble. Due to the random choice of the Rsnw parameter for
the truth member, it is likely that the ensemble mean is neg-
atively biased for snow volume.

Future work will further investigate how to properly as-
similate SIC observations. Because of their positive impact
on the marginal ice zone, an experiment could be proposed
in which only SIC observations are assimilated in that re-
mote location. Additionally, further investigation is needed
to test the use of more sophisticated data assimilation meth-
ods that accurately handle non-Gaussian distributions. The
RHF can represent non-Gaussian priors and arbitrary likeli-
hoods for the observed variables. The RHF can be modified
to work with bounded quantities (Anderson, 2020, 2022),
which should be investigated in future studies. Lastly, sup-
plementary OSSE experiments could be completed with a
different ensemble member chosen as the truth to further un-
derstand the impacts of the perturbed parameters on repre-
senting snow volume. These additional experiments will help
us further understand the correct data assimilation setup for
representing sea ice and snow in climate analyses.

Code availability. CICE version 5, which was used for the ex-
periments described here, is part of the CESM2 framework,
which is publicly available for download from https://www.
cesm.ucar.edu/models/cesm2 (Danabasoglu et al., 2020). The
data assimilation software used here can be downloaded from
https://doi.org/10.5065/D6WQ0202 (NCAR, 2020).

Data availability. The perturbed CICE parameters used
in this study are publicly available for download from
https://doi.org/10.5281/zenodo.8164431 (Riedel, 2023). Post-
processed and raw data from the experiments described here are
stored on the NCAR campaign storage and can be provided upon
request.
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