Articles | Volume 17, issue 12
https://doi.org/10.5194/tc-17-5219-2023
https://doi.org/10.5194/tc-17-5219-2023
Research article
 | 
08 Dec 2023
Research article |  | 08 Dec 2023

Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model

Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera

Related authors

Global ocean and sea ice variability simulated in eddy-permitting climate models
Yushi Morioka, Eric Maisonnave, Sébastien Masson, Clement Rousset, Luis Kornblueh, Marco Giorgetta, Masami Nonaka, and Swadhin K. Behera
EGUsphere, https://doi.org/10.5194/egusphere-2025-2258,https://doi.org/10.5194/egusphere-2025-2258, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Related subject area

Discipline: Sea ice | Subject: Antarctic
Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2
Mukund Gupta, Heather Regan, Younghyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
The Cryosphere, 19, 1241–1257, https://doi.org/10.5194/tc-19-1241-2025,https://doi.org/10.5194/tc-19-1241-2025, 2025
Short summary
Brief communication: New perspectives on the skill of modelled sea ice trends in light of recent Antarctic sea ice loss
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024,https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary
Quantifying the influence of snow over sea ice morphology on L-band passive microwave satellite observations in the Southern Ocean
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024,https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
The role of atmospheric conditions in the Antarctic sea ice extent summer minima
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024,https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Sources of low-frequency variability in observed Antarctic sea ice
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024,https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary

Cited articles

Akitomo, K., Awaji, T., and Imasato, N: Open-ocean deep convection in the Weddell Sea: Two-dimensional numerical experiments with a nonhydrostatic model, Deep-Sea Res. Pt. I, 42, 53–73, https://doi.org/10.1016/0967-0637(94)00035-Q, 1995. 
Blanchard-Wrigglesworth, E., Roach, L. A., Donohoe, A., and Ding, Q.: Impact of winds and Southern Ocean SSTs on Antarctic sea ice trends and variability, J. Climate, 34, 949–965, https://doi.org/10.1175/JCLI-D-20-0386.1, 2021. 
Bushuk, M., Msadek, R., Winton, M., Vecchi, G., Yang, X., Rosati, A., and Gudgel, R.: Regional Arctic sea–ice prediction: potential versus operational seasonal forecast skill, Clim. Dynam., 52, 2721–2743, https://doi.org/10.1007/s00382-018-4288-y, 2019. 
Download
Short summary
Antarctic sea ice extent shows multidecadal variations with its decrease in the 1980s and increase after the 2000s until 2015. Here we show that our climate model can predict the sea ice decrease by deep convection in the Southern Ocean and the sea ice increase by the surface wind variability. These results suggest that accurate simulation and prediction of subsurface ocean and atmosphere conditions are important for those of Antarctic sea ice variability on a multidecadal timescale.
Share