Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4729-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-4729-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal evolution of the supraglacial drainage network at Humboldt Glacier, northern Greenland, between 2016 and 2020
Lauren D. Rawlins
CORRESPONDING AUTHOR
Department of Environment and Geography, University of York, York, YO10 5NG, UK
David M. Rippin
Department of Environment and Geography, University of York, York, YO10 5NG, UK
Andrew J. Sole
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
Stephen J. Livingstone
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
Kang Yang
School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
Related authors
No articles found.
Adrian Dye, Robert Bryant, Francesca Falcini, Joseph Mallalieu, Miles Dimbleby, Michael Beckwith, David Rippin, and Nina Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2510, https://doi.org/10.5194/egusphere-2024-2510, 2024
Short summary
Short summary
Thermal undercutting of the terminus has driven recent rapid retreat of an Arctic glacier. Water temperatures (~4 °C) at the ice front were warmer than previously assumed and thermal undercutting was over several metres deep. This triggered phases of high calving activity, playing a substantial role in the rapid retreat of Kaskasapakte glacier since 2012, with important implications for processes occurring at glacier-water contact points and implications for hydrology and ecology downstream.
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024, https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Short summary
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the record that has been speculated about by palaeoglaciologists for over a century. Here we used newly available bathymetric data and provide landform evidence of corridors of fast ice flow that we interpret as ice streams. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and Bothnian sources.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023, https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin
The Cryosphere, 16, 2449–2470, https://doi.org/10.5194/tc-16-2449-2022, https://doi.org/10.5194/tc-16-2449-2022, 2022
Short summary
Short summary
Here we use old photographs gathered several decades ago to expand the temporal record of glacier change in part of East Greenland. This is important because the longer the record of past glacier change, the better we are at predicting future glacier behaviour. Our work also shows that despite all these glaciers retreating, the rate at which they do this varies markedly. It is therefore important to consider outlet glaciers from Greenland individually to take account of this differing behaviour.
Benjamin Joseph Davison, Tom Cowton, Andrew Sole, Finlo Cottier, and Pete Nienow
The Cryosphere, 16, 1181–1196, https://doi.org/10.5194/tc-16-1181-2022, https://doi.org/10.5194/tc-16-1181-2022, 2022
Short summary
Short summary
The ocean is an important driver of Greenland glacier retreat. Icebergs influence ocean temperature in the vicinity of glaciers, which will affect glacier retreat rates, but the effect of icebergs on water temperature is poorly understood. In this study, we use a model to show that icebergs cause large changes to water properties next to Greenland's glaciers, which could influence ocean-driven glacier retreat around Greenland.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Mingxuan Wu, Xiaohong Liu, Hongbin Yu, Hailong Wang, Yang Shi, Kang Yang, Anton Darmenov, Chenglai Wu, Zhien Wang, Tao Luo, Yan Feng, and Ziming Ke
Atmos. Chem. Phys., 20, 13835–13855, https://doi.org/10.5194/acp-20-13835-2020, https://doi.org/10.5194/acp-20-13835-2020, 2020
Short summary
Short summary
The spatiotemporal distributions of dust aerosol simulated by global climate models (GCMs) are highly uncertain. In this study, we evaluate dust extinction profiles, optical depth, and surface concentrations simulated in three GCMs and one reanalysis against multiple satellite retrievals and surface observations to gain process-level understanding. Our results highlight the importance of correctly representing dust emission, dry/wet deposition, and size distribution in GCMs.
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020, https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Short summary
This study compares hourly supraglacial moulin discharge simulations from three surface meltwater routing models. Results show that these models are superior to simply using regional climate model runoff without routing, but different routing models, different-spatial-resolution DEMs, and parameterized seasonal evolution of supraglacial stream and river networks induce significant variability in diurnal moulin discharges and corresponding subglacial effective pressures.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Stephen J. Livingstone, Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald, and Felix Ng
The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, https://doi.org/10.5194/tc-14-1989-2020, 2020
Short summary
Short summary
We map series of aligned mounds (esker beads) across central Nunavut, Canada. Mounds are interpreted to have formed roughly annually as sediment carried by subglacial rivers is deposited at the ice margin. Chains of mounds are formed as the ice retreats. This high-resolution (annual) record allows us to constrain the pace of ice retreat, sediment fluxes, and the style of drainage through time. In particular, we suggest that eskers in general record a composite signature of ice-marginal drainage.
Stephen J. Livingstone, Andrew J. Sole, Robert D. Storrar, Devin Harrison, Neil Ross, and Jade Bowling
The Cryosphere, 13, 2789–2796, https://doi.org/10.5194/tc-13-2789-2019, https://doi.org/10.5194/tc-13-2789-2019, 2019
Short summary
Short summary
We report three new subglacial lakes close to the ice sheet margin of West Greenland. The lakes drained and refilled once each between 2009 and 2017, with two lakes draining in < 1 month during August 2014 and August 2015. The 2015 drainage caused a ~ 1-month down-glacier slowdown in ice flow and flooded the foreland, significantly modifying the braided river and depositing up to 8 m of sediment. These subglacial lakes offer accessible targets for future investigations and exploration.
Kang Yang, Laurence C. Smith, Leif Karlstrom, Matthew G. Cooper, Marco Tedesco, Dirk van As, Xiao Cheng, Zhuoqi Chen, and Manchun Li
The Cryosphere, 12, 3791–3811, https://doi.org/10.5194/tc-12-3791-2018, https://doi.org/10.5194/tc-12-3791-2018, 2018
Short summary
Short summary
A high-resolution spatially lumped hydrologic surface routing model is proposed to simulate meltwater transport over bare ice surfaces. In an ice-covered catchment, meltwater is routed by slow interfluve flow (~10−3–10−4 m s−1) followed by fast open-channel flow (~10−1 m s−1). Seasonal evolution of supraglacial stream-river networks substantially alters the magnitude and timing of moulin discharge with implications for subglacial hydrology and ice dynamics.
Josh Crozier, Leif Karlstrom, and Kang Yang
The Cryosphere, 12, 3383–3407, https://doi.org/10.5194/tc-12-3383-2018, https://doi.org/10.5194/tc-12-3383-2018, 2018
Short summary
Short summary
Understanding ice sheet surface meltwater routing is important for modeling and predicting ice sheet evolution. We determined that bed topography underlying the Greenland Ice Sheet is the primary influence on 1–10 km scale ice surface topography, and on drainage-basin-scale surface meltwater routing. We provide a simple means of predicting the response of surface meltwater routing to changing ice flow conditions and explore the implications of this for subglacial hydrology.
David M. Rippin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-163, https://doi.org/10.5194/tc-2018-163, 2018
Preprint withdrawn
Short summary
Short summary
We explore the changes going on at the base of the Getz Ice Shelf in West Antarctica using repeated airborne radio-echo sounding surveys which allow us to see the ice-base. Between 2010 and 2014 we observed considerable thinning at an average rate of nearly 13 m a−1, which is faster than recent predictions. These large changes are important because ice-shelves control how easily ice is transmitted from inland Antarctica to the coast. If ice-shelves collapse, this happens much more quickly.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Clément Miège, Lincoln H. Pitcher, Jonathan C. Ryan, Kang Yang, and Sarah W. Cooley
The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, https://doi.org/10.5194/tc-12-955-2018, 2018
Short summary
Short summary
We present measurements of ice density that show the melting bare-ice surface of the Greenland ice sheet study site is porous and saturated with meltwater. The data suggest up to 18 cm of meltwater is temporarily stored within porous, low-density ice. The findings imply meltwater drainage off the ice sheet surface is delayed and that the surface mass balance of the ice sheet during summer cannot be estimated solely from ice surface elevation change measurements.
Christopher N. Williams, Stephen L. Cornford, Thomas M. Jordan, Julian A. Dowdeswell, Martin J. Siegert, Christopher D. Clark, Darrel A. Swift, Andrew Sole, Ian Fenty, and Jonathan L. Bamber
The Cryosphere, 11, 363–380, https://doi.org/10.5194/tc-11-363-2017, https://doi.org/10.5194/tc-11-363-2017, 2017
Short summary
Short summary
Knowledge of ice sheet bed topography and surrounding sea floor bathymetry is integral to the understanding of ice sheet processes. Existing elevation data products for Greenland underestimate fjord bathymetry due to sparse data availability. We present a new method to create physically based synthetic fjord bathymetry to fill these gaps, greatly improving on previously available datasets. This will assist in future elevation product development until further observations become available.
Stephen J. Livingstone and Chris D. Clark
Earth Surf. Dynam., 4, 567–589, https://doi.org/10.5194/esurf-4-567-2016, https://doi.org/10.5194/esurf-4-567-2016, 2016
Short summary
Short summary
We mapped and analysed nearly 2000 large valleys that were formed by meltwater flowing under a former ice sheet. Our results demonstrate that valleys tend to cluster together in distinctive networks. The valleys themselves are typically < 20 km long, and 0.5–3 km wide, and their morphology is strongly influenced by local bed conditions (e.g. topography) and hydrology. We suggest valleys formed gradually, with secondary contributions from flood drainage of water stored on top of or under the ice.
S. de la Peña, I. M. Howat, P. W. Nienow, M. R. van den Broeke, E. Mosley-Thompson, S. F. Price, D. Mair, B. Noël, and A. J. Sole
The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, https://doi.org/10.5194/tc-9-1203-2015, 2015
Short summary
Short summary
This paper presents an assessment of changes in the near-surface structure of the accumulation zone of the Greenland Ice Sheet caused by an increase of melt at higher elevations in the last decade, especially during the unusually warm years of 2010 and 2012. The increase in melt and firn densification complicate the interpretation of changes in the ice volume, and the observed increase in firn ice content may reduce the important meltwater buffering capacity of the Greenland Ice Sheet.
N. Wilkens, J. Behrens, T. Kleiner, D. Rippin, M. Rückamp, and A. Humbert
The Cryosphere, 9, 675–690, https://doi.org/10.5194/tc-9-675-2015, https://doi.org/10.5194/tc-9-675-2015, 2015
K. C. Rose, N. Ross, T. A. Jordan, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, A. M. Le Brocq, D. M. Rippin, and M. J. Siegert
Earth Surf. Dynam., 3, 139–152, https://doi.org/10.5194/esurf-3-139-2015, https://doi.org/10.5194/esurf-3-139-2015, 2015
Short summary
Short summary
We use ice-penetrating-radar data to identify a laterally continuous, gently sloping topographic block, comprising two surfaces separated by a distinct break in slope, preserved beneath the Institute and Möller ice streams, West Antarctica. We interpret these features as extensive erosion surfaces, showing that ancient (pre-glacial) surfaces can be preserved at low elevations beneath ice sheets. Different erosion regimes (e.g. fluvial and marine) may have formed these surfaces.
C. C. Clason, D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, A. Sole, S. Palmer, and W. Schwanghart
The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, https://doi.org/10.5194/tc-9-123-2015, 2015
A. P. Wright, A. M. Le Brocq, S. L. Cornford, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, T. A. Jordan, A. J. Payne, D. M. Rippin, N. Ross, and M. J. Siegert
The Cryosphere, 8, 2119–2134, https://doi.org/10.5194/tc-8-2119-2014, https://doi.org/10.5194/tc-8-2119-2014, 2014
N. Chauché, A. Hubbard, J.-C. Gascard, J. E. Box, R. Bates, M. Koppes, A. Sole, P. Christoffersen, and H. Patton
The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014, https://doi.org/10.5194/tc-8-1457-2014, 2014
M. J. Siegert, N. Ross, H. Corr, B. Smith, T. Jordan, R. G. Bingham, F. Ferraccioli, D. M. Rippin, and A. Le Brocq
The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014, https://doi.org/10.5194/tc-8-15-2014, 2014
S. J. Livingstone, C. D. Clark, J. Woodward, and J. Kingslake
The Cryosphere, 7, 1721–1740, https://doi.org/10.5194/tc-7-1721-2013, https://doi.org/10.5194/tc-7-1721-2013, 2013
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Greenland
Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet
Impacts of differing melt regimes on satellite radar waveforms and elevation retrievals
The future of Upernavik Isstrøm through the ISMIP6 framework: sensitivity analysis and Bayesian calibration of ensemble prediction
Firn seismic anisotropy in the Northeast Greenland Ice Stream from ambient-noise surface waves
First results of the polar regional climate model RACMO2.4
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Ice speed of a Greenlandic tidewater glacier modulated by tide, melt, and rain
Mapping the vertical heterogeneity of Greenland's firn from 2011–2019 using airborne radar and laser altimetry
Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climates
Coupling MAR (Modèle Atmosphérique Régional) with PISM (Parallel Ice Sheet Model) mitigates the positive melt–elevation feedback
Cloud- and ice-albedo feedbacks drive greater Greenland Ice Sheet sensitivity to warming in CMIP6 than in CMIP5
Evaluating different geothermal heat-flow maps as basal boundary conditions during spin-up of the Greenland ice sheet
Choice of observation type affects Bayesian calibration of Greenland Ice Sheet model simulations
A topographically-controlled tipping point for complete Greenland ice-sheet melt
Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet
Precursor of disintegration of Greenland's largest floating ice tongue
An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020)
Subglacial lake activity beneath the ablation zone of the Greenland Ice Sheet
The control of short-term ice mélange weakening episodes on calving activity at major Greenland outlet glaciers
Weekly to monthly terminus variability of Greenland's marine-terminating outlet glaciers
The contribution of Humboldt Glacier, northern Greenland, to sea-level rise through 2100 constrained by recent observations of speedup and retreat
Observed mechanism for sustained glacier retreat and acceleration in response to ocean warming around Greenland
Assessing bare-ice albedo simulated by MAR over the Greenland ice sheet (2000–2021) and implications for meltwater production estimates
Drill-site selection for cosmogenic-nuclide exposure dating of the bed of the Greenland Ice Sheet
A new Level 4 multi-sensor ice surface temperature product for the Greenland Ice Sheet
High-resolution imaging of supraglacial hydrological features on the Greenland Ice Sheet with NASA's Airborne Topographic Mapper (ATM) instrument suite
The impact of climate oscillations on the surface energy budget over the Greenland Ice Sheet in a changing climate
GBaTSv2: a revised synthesis of the likely basal thermal state of the Greenland Ice Sheet
Unravelling the long-term, locally heterogenous response of Greenland glaciers observed in archival photography
Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings
Comparison of ice dynamics using full-Stokes and Blatter–Pattyn approximation: application to the Northeast Greenland Ice Stream
Melt probabilities and surface temperature trends on the Greenland ice sheet using a Gaussian mixture model
Modelling the effect of submarine iceberg melting on glacier-adjacent water properties
Multi-decadal retreat of marine-terminating outlet glaciers in northwest and central-west Greenland
Sources of uncertainty in Greenland surface mass balance in the 21st century
Proper orthogonal decomposition of ice velocity identifies drivers of flow variability at Sermeq Kujalleq (Jakobshavn Isbræ)
Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level
Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland
Generation and fate of basal meltwater during winter, western Greenland Ice Sheet
Modeling the Greenland englacial stratigraphy
Upstream flow effects revealed in the EastGRIP ice core using Monte Carlo inversion of a two-dimensional ice-flow model
Indication of high basal melting at the EastGRIP drill site on the Northeast Greenland Ice Stream
Brief communication: Reduction in the future Greenland ice sheet surface melt with the help of solar geoengineering
Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet
Sensitivity of the Greenland surface mass and energy balance to uncertainties in key model parameters
Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019)
Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet
Winter drainage of surface lakes on the Greenland Ice Sheet from Sentinel-1 SAR imagery
Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland
The GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for phase 6 of the Coupled Model Intercomparison Project (ISMIP6) – Part 1: Projections of the Greenland ice sheet evolution by the end of the 21st century
Nils Bochow, Anna Poltronieri, and Niklas Boers
The Cryosphere, 18, 5825–5863, https://doi.org/10.5194/tc-18-5825-2024, https://doi.org/10.5194/tc-18-5825-2024, 2024
Short summary
Short summary
Using the latest climate models, we update the understanding of how the Greenland ice sheet responds to climate changes. We found that precipitation and temperature changes in Greenland vary across different regions. Our findings suggest that using uniform estimates for temperature and precipitation for modelling the response of the ice sheet can overestimate ice loss in Greenland. Therefore, this study highlights the need for spatially resolved data in predicting the ice sheet's future.
Alexander C. Ronan, Robert L. Hawley, and Jonathan W. Chipman
The Cryosphere, 18, 5673–5683, https://doi.org/10.5194/tc-18-5673-2024, https://doi.org/10.5194/tc-18-5673-2024, 2024
Short summary
Short summary
We generate a 2010–2021 time series of CryoSat-2 waveform shape metrics on the Greenland Ice Sheet, and we compare it to CryoSat-2 elevation data to investigate the reliability of two algorithms used to derive elevations from the SIRAL radar altimeter. Retracked elevations are found to depend on a waveform's leading-edge width in the dry-snow zone. The study indicates that retracking algorithms must consider significant climate events and snow conditions when assessing elevation change.
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024, https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary
Short summary
Inspired by a previous intercomparison framework, our study better constrains uncertainties in glacier evolution using an innovative method to validate Bayesian calibration. Upernavik Isstrøm, one of Greenland's largest glaciers, has lost significant mass since 1985. By integrating observational data, climate models, human emissions, and internal model parameters, we project its evolution until 2100. We show that future human emissions are the main source of uncertainty in 2100, making up half.
Emma Pearce, Dimitri Zigone, Coen Hofstede, Andreas Fichtner, Joachim Rimpot, Sune Olander Rasmussen, Johannes Freitag, and Olaf Eisen
The Cryosphere, 18, 4917–4932, https://doi.org/10.5194/tc-18-4917-2024, https://doi.org/10.5194/tc-18-4917-2024, 2024
Short summary
Short summary
Our study near EastGRIP camp in Greenland shows varying firn properties by direction (crucial for studying ice stream stability, structure, surface mass balance, and past climate conditions). We used dispersion curve analysis of Love and Rayleigh waves to show firn is nonuniform along and across the flow of an ice stream due to wind patterns, seasonal variability, and the proximity to the edge of the ice stream. This method better informs firn structure, advancing ice stream understanding.
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024, https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Short summary
We present a new version of the polar Regional Atmospheric Climate Model (RACMO), version 2.4p1, and show first results for Greenland, Antarctica and the Arctic. We provide an overview of all changes and investigate the impact that they have on the climate of polar regions. By comparing the results with observations and the output from the previous model version, we show that the model performs well regarding the surface mass balance of the ice sheets and near-surface climate.
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024, https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Short summary
Comprehensive datasets of calving-front changes are essential for studying and modeling outlet glaciers. Current records are limited in temporal resolution due to manual delineation. We use deep learning to automatically delineate calving fronts for 23 glaciers in Greenland. Resulting time series resolve long-term, seasonal, and subseasonal patterns. We discuss the implications of our results and provide the cryosphere community with a data product and an implementation of our processing system.
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
EGUsphere, https://doi.org/10.5194/egusphere-2024-1476, https://doi.org/10.5194/egusphere-2024-1476, 2024
Short summary
Short summary
We report flow speed variations near the front of a tidewater glacier in Greenland. Ice flow near the glacier front is crucial for the mass loss of the Greenland ice sheet, but in-situ data are hard to obtain. Our unique in-situ GPS data revealed fine details of short-term speed variations associated with melting, ocean tides, and rain. The results are important for understanding the response of tidewater glaciers to changing environments, such as warming, more frequent rain, and ice thinning.
Anja Rutishauser, Kirk M. Scanlan, Baptiste Vandecrux, Nanna B. Karlsson, Nicolas Jullien, Andreas P. Ahlstrøm, Robert S. Fausto, and Penelope How
The Cryosphere, 18, 2455–2472, https://doi.org/10.5194/tc-18-2455-2024, https://doi.org/10.5194/tc-18-2455-2024, 2024
Short summary
Short summary
The Greenland Ice Sheet interior is covered by a layer of firn, which is important for surface meltwater runoff and contributions to global sea-level rise. Here, we combine airborne radar sounding and laser altimetry measurements to delineate vertically homogeneous and heterogeneous firn. Our results reveal changes in firn between 2011–2019, aligning well with known climatic events. This approach can be used to outline firn areas primed for significantly changing future meltwater runoff.
Guy J. G. Paxman, Stewart S. R. Jamieson, Aisling M. Dolan, and Michael J. Bentley
The Cryosphere, 18, 1467–1493, https://doi.org/10.5194/tc-18-1467-2024, https://doi.org/10.5194/tc-18-1467-2024, 2024
Short summary
Short summary
This study uses airborne radar data and satellite imagery to map mountainous topography hidden beneath the Greenland Ice Sheet. We find that the landscape records the former extent and configuration of ice masses that were restricted to areas of high topography. Computer models of ice flow indicate that valley glaciers eroded this landscape millions of years ago when local air temperatures were at least 4 °C higher than today and Greenland’s ice volume was < 10 % of that of the modern ice sheet.
Alison Delhasse, Johanna Beckmann, Christoph Kittel, and Xavier Fettweis
The Cryosphere, 18, 633–651, https://doi.org/10.5194/tc-18-633-2024, https://doi.org/10.5194/tc-18-633-2024, 2024
Short summary
Short summary
Aiming to study the long-term influence of an extremely warm climate in the Greenland Ice Sheet contribution to sea level rise, a new regional atmosphere–ice sheet model setup was established. The coupling, explicitly considering the melt–elevation feedback, is compared to an offline method to consider this feedback. We highlight mitigation of the feedback due to local changes in atmospheric circulation with changes in surface topography, making the offline correction invalid on the margins.
Idunn Aamnes Mostue, Stefan Hofer, Trude Storelvmo, and Xavier Fettweis
The Cryosphere, 18, 475–488, https://doi.org/10.5194/tc-18-475-2024, https://doi.org/10.5194/tc-18-475-2024, 2024
Short summary
Short summary
The latest generation of climate models (Coupled Model Intercomparison Project Phase 6 – CMIP6) warm more over Greenland and the Arctic and thus also project a larger mass loss from the Greenland Ice Sheet (GrIS) compared to the previous generation of climate models (CMIP5). Our work suggests for the first time that part of the greater mass loss in CMIP6 over the GrIS is driven by a difference in the surface mass balance sensitivity from a change in cloud representation in the CMIP6 models.
Tong Zhang, William Colgan, Agnes Wansing, Anja Løkkegaard, Gunter Leguy, William H. Lipscomb, and Cunde Xiao
The Cryosphere, 18, 387–402, https://doi.org/10.5194/tc-18-387-2024, https://doi.org/10.5194/tc-18-387-2024, 2024
Short summary
Short summary
The geothermal heat flux determines how much heat enters from beneath the ice sheet, and thus impacts the temperature and the flow of the ice sheet. In this study we investigate how much geothermal heat flux impacts the initialization of the Greenland ice sheet. We use the Community Ice Sheet Model with two different initialization methods. We find a non-trivial influence of the choice of heat flow boundary conditions on the ice sheet initializations for further designs of ice sheet modeling.
Denis Felikson, Sophie Nowicki, Isabel Nias, Beata Csatho, Anton Schenk, Michael J. Croteau, and Bryant Loomis
The Cryosphere, 17, 4661–4673, https://doi.org/10.5194/tc-17-4661-2023, https://doi.org/10.5194/tc-17-4661-2023, 2023
Short summary
Short summary
We narrow the spread in model simulations of the Greenland Ice Sheet using velocity change, dynamic thickness change, and mass change observations. We find that the type of observation chosen can lead to significantly different calibrated probability distributions. Further work is required to understand how to best calibrate ensembles of ice sheet simulations because this will improve probability distributions of projected sea-level rise, which is crucial for coastal planning and adaptation.
Michele Petrini, Meike Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter Leguy, William Lipscomb, and Heiko Goelzer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-154, https://doi.org/10.5194/tc-2023-154, 2023
Revised manuscript accepted for TC
Short summary
Short summary
In this study, we investigate with a numerical model the stability of the Greenland ice-sheet under prolonged sustained warming and ice melt. We show that there is a threshold beyond which the ice-sheet will lose more than 80 % of its mass over tens of thousand of years. The point of no return is reached when the ice-sheet disconnects from a region of high topography in western Greenland. This threshold is determined by the interaction of surface and solid-Earth processes.
Johanna Beckmann and Ricarda Winkelmann
The Cryosphere, 17, 3083–3099, https://doi.org/10.5194/tc-17-3083-2023, https://doi.org/10.5194/tc-17-3083-2023, 2023
Short summary
Short summary
Over the past decade, Greenland has experienced several extreme melt events.
With progressing climate change, such extreme melt events can be expected to occur more frequently and potentially become more severe and persistent.
Strong melt events may considerably contribute to Greenland's mass loss, which in turn strongly determines future sea level rise. How important these extreme melt events could be in the future is assessed in this study for the first time.
Angelika Humbert, Veit Helm, Niklas Neckel, Ole Zeising, Martin Rückamp, Shfaqat Abbas Khan, Erik Loebel, Jörg Brauchle, Karsten Stebner, Dietmar Gross, Rabea Sondershaus, and Ralf Müller
The Cryosphere, 17, 2851–2870, https://doi.org/10.5194/tc-17-2851-2023, https://doi.org/10.5194/tc-17-2851-2023, 2023
Short summary
Short summary
The largest floating glacier mass in Greenland, the 79° N Glacier, is showing signs of instability. We investigate how crack formation at the glacier's calving front has changed over the last decades by using satellite imagery and airborne data. The calving front is about to lose contact to stabilizing ice islands. Simulations show that the glacier will accelerate as a result of this, leading to an increase in ice discharge of more than 5.1 % if its calving front retreats by 46 %.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023, https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023, https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Short summary
We characterized short-lived episodes of ice mélange weakening (IMW) at the front of three major Greenland outlet glaciers. Through a continuous detection at the front of Kangerdlugssuaq Glacier during the June-to-September period from 2018 to 2021, we found that 87 % of the IMW episodes occurred prior to a large-scale calving event. Using a simple model for ice mélange motion, we further characterized the IMW process as self-sustained through the existence of an IMW–calving feedback.
Taryn E. Black and Ian Joughin
The Cryosphere, 17, 1–13, https://doi.org/10.5194/tc-17-1-2023, https://doi.org/10.5194/tc-17-1-2023, 2023
Short summary
Short summary
The frontal positions of most ice-sheet-based glaciers in Greenland vary seasonally. On average, these glaciers begin retreating in May and begin advancing in October, and the difference between their most advanced and most retreated positions is 220 m. The timing may be related to the timing of melt on the ice sheet, and the seasonal length variation may be related to glacier speed. These seasonal variations can affect glacier behavior and, consequently, how much ice is lost from the ice sheet.
Trevor R. Hillebrand, Matthew J. Hoffman, Mauro Perego, Stephen F. Price, and Ian M. Howat
The Cryosphere, 16, 4679–4700, https://doi.org/10.5194/tc-16-4679-2022, https://doi.org/10.5194/tc-16-4679-2022, 2022
Short summary
Short summary
We estimate that Humboldt Glacier, northern Greenland, will contribute 5.2–8.7 mm to global sea level in 2007–2100, using an ensemble of model simulations constrained by observations of glacier retreat and speedup. This is a significant fraction of the 40–140 mm from the whole Greenland Ice Sheet predicted by the recent ISMIP6 multi-model ensemble, suggesting that calibrating models against observed velocity changes could result in higher estimates of 21st century sea-level rise from Greenland.
Evan Carnahan, Ginny Catania, and Timothy C. Bartholomaus
The Cryosphere, 16, 4305–4317, https://doi.org/10.5194/tc-16-4305-2022, https://doi.org/10.5194/tc-16-4305-2022, 2022
Short summary
Short summary
The Greenland Ice Sheet primarily loses mass through increased ice discharge. We find changes in discharge from outlet glaciers are initiated by ocean warming, which causes a change in the balance of forces resisting gravity and leads to acceleration. Vulnerable conditions for sustained retreat and acceleration are predetermined by the glacier-fjord geometry and exist around Greenland, suggesting increases in ice discharge may be sustained into the future despite a pause in ocean warming.
Raf M. Antwerpen, Marco Tedesco, Xavier Fettweis, Patrick Alexander, and Willem Jan van de Berg
The Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022, https://doi.org/10.5194/tc-16-4185-2022, 2022
Short summary
Short summary
The ice on Greenland has been melting more rapidly over the last few years. Most of this melt comes from the exposure of ice when the overlying snow melts. This ice is darker than snow and absorbs more sunlight, leading to more melt. It remains challenging to accurately simulate the brightness of the ice. We show that the color of ice simulated by Modèle Atmosphérique Régional (MAR) is too bright. We then show that this means that MAR may underestimate how fast the Greenland ice is melting.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022, https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Short summary
The 7.4 m of sea level equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice-sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Ioanna Karagali, Magnus Barfod Suhr, Ruth Mottram, Pia Nielsen-Englyst, Gorm Dybkjær, Darren Ghent, and Jacob L. Høyer
The Cryosphere, 16, 3703–3721, https://doi.org/10.5194/tc-16-3703-2022, https://doi.org/10.5194/tc-16-3703-2022, 2022
Short summary
Short summary
Ice surface temperature (IST) products were used to develop the first multi-sensor, gap-free Level 4 (L4) IST product of the Greenland Ice Sheet (GIS) for 2012, when a significant melt event occurred. For the melt season, mean IST was −15 to −1 °C, and almost the entire GIS experienced at least 1 to 5 melt days. Inclusion of the L4 IST to a surface mass budget (SMB) model improved simulated surface temperatures during the key onset of the melt season, where biases are typically large.
Michael Studinger, Serdar S. Manizade, Matthew A. Linkswiler, and James K. Yungel
The Cryosphere, 16, 3649–3668, https://doi.org/10.5194/tc-16-3649-2022, https://doi.org/10.5194/tc-16-3649-2022, 2022
Short summary
Short summary
The footprint density and high-resolution imagery of airborne surveys reveal details in supraglacial hydrological features that are currently not obtainable from spaceborne data. The accuracy and resolution of airborne measurements complement spaceborne measurements, can support calibration and validation of spaceborne methods, and provide information necessary for process studies of the hydrological system on ice sheets that currently cannot be achieved from spaceborne observations alone.
Tiago Silva, Jakob Abermann, Brice Noël, Sonika Shahi, Willem Jan van de Berg, and Wolfgang Schöner
The Cryosphere, 16, 3375–3391, https://doi.org/10.5194/tc-16-3375-2022, https://doi.org/10.5194/tc-16-3375-2022, 2022
Short summary
Short summary
To overcome internal climate variability, this study uses k-means clustering to combine NAO, GBI and IWV over the Greenland Ice Sheet (GrIS) and names the approach as the North Atlantic influence on Greenland (NAG). With the support of a polar-adapted RCM, spatio-temporal changes on SEB components within NAG phases are investigated. We report atmospheric warming and moistening across all NAG phases as well as large-scale and regional-scale contributions to GrIS mass loss and their interactions.
Joseph A. MacGregor, Winnie Chu, William T. Colgan, Mark A. Fahnestock, Denis Felikson, Nanna B. Karlsson, Sophie M. J. Nowicki, and Michael Studinger
The Cryosphere, 16, 3033–3049, https://doi.org/10.5194/tc-16-3033-2022, https://doi.org/10.5194/tc-16-3033-2022, 2022
Short summary
Short summary
Where the bottom of the Greenland Ice Sheet is frozen and where it is thawed is not well known, yet knowing this state is increasingly important to interpret modern changes in ice flow there. We produced a second synthesis of knowledge of the basal thermal state of the ice sheet using airborne and satellite observations and numerical models. About one-third of the ice sheet’s bed is likely thawed; two-fifths is likely frozen; and the remainder is too uncertain to specify.
Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin
The Cryosphere, 16, 2449–2470, https://doi.org/10.5194/tc-16-2449-2022, https://doi.org/10.5194/tc-16-2449-2022, 2022
Short summary
Short summary
Here we use old photographs gathered several decades ago to expand the temporal record of glacier change in part of East Greenland. This is important because the longer the record of past glacier change, the better we are at predicting future glacier behaviour. Our work also shows that despite all these glaciers retreating, the rate at which they do this varies markedly. It is therefore important to consider outlet glaciers from Greenland individually to take account of this differing behaviour.
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Short summary
We use an ice sheet model to determine what influenced the Greenland Ice Sheet to retreat across a portion of southwestern Greenland during the Holocene (about the last 12 000 years). Our simulations, constrained by observations from geologic markers, show that atmospheric warming and ice melt primarily caused the ice sheet to retreat rapidly across this domain. We find, however, that iceberg calving at the interface where the ice meets the ocean significantly influenced ice mass change.
Martin Rückamp, Thomas Kleiner, and Angelika Humbert
The Cryosphere, 16, 1675–1696, https://doi.org/10.5194/tc-16-1675-2022, https://doi.org/10.5194/tc-16-1675-2022, 2022
Short summary
Short summary
We present a comparative modelling study between the full-Stokes (FS) and Blatter–Pattyn (BP) approximation applied to the Northeast Greenland Ice Stream. Both stress regimes are implemented in one single ice sheet code to eliminate numerical issues. The simulations unveil minor differences in the upper ice stream but become considerable at the grounding line of the 79° North Glacier. Model differences are stronger for a power-law friction than a linear friction law.
Daniel Clarkson, Emma Eastoe, and Amber Leeson
The Cryosphere, 16, 1597–1607, https://doi.org/10.5194/tc-16-1597-2022, https://doi.org/10.5194/tc-16-1597-2022, 2022
Short summary
Short summary
The Greenland ice sheet has seen large amounts of melt in recent years, and accurately modelling temperatures is vital to understand how much of the ice sheet is melting. We estimate the probability of melt from ice surface temperature data to identify which areas of the ice sheet have experienced melt and estimate temperature quantiles. Our results suggest that for large areas of the ice sheet, melt has become more likely over the past 2 decades and high temperatures are also becoming warmer.
Benjamin Joseph Davison, Tom Cowton, Andrew Sole, Finlo Cottier, and Pete Nienow
The Cryosphere, 16, 1181–1196, https://doi.org/10.5194/tc-16-1181-2022, https://doi.org/10.5194/tc-16-1181-2022, 2022
Short summary
Short summary
The ocean is an important driver of Greenland glacier retreat. Icebergs influence ocean temperature in the vicinity of glaciers, which will affect glacier retreat rates, but the effect of icebergs on water temperature is poorly understood. In this study, we use a model to show that icebergs cause large changes to water properties next to Greenland's glaciers, which could influence ocean-driven glacier retreat around Greenland.
Taryn E. Black and Ian Joughin
The Cryosphere, 16, 807–824, https://doi.org/10.5194/tc-16-807-2022, https://doi.org/10.5194/tc-16-807-2022, 2022
Short summary
Short summary
We used satellite images to create a comprehensive record of annual glacier change in northwest Greenland from 1972 through 2021. We found that nearly all glaciers in our study area have retreated and glacier retreat accelerated from around 1996. Comparing these results with climate data, we found that glacier retreat is most sensitive to water runoff and moderately sensitive to ocean temperatures. These can affect glacier fronts in several ways, so no process clearly dominates glacier retreat.
Katharina M. Holube, Tobias Zolles, and Andreas Born
The Cryosphere, 16, 315–331, https://doi.org/10.5194/tc-16-315-2022, https://doi.org/10.5194/tc-16-315-2022, 2022
Short summary
Short summary
We simulated the surface mass balance of the Greenland Ice Sheet in the 21st century by forcing a snow model with the output of many Earth system models and four greenhouse gas emission scenarios. We quantify the contribution to uncertainty in surface mass balance of these two factors and the choice of parameters of the snow model. The results show that the differences between Earth system models are the main source of uncertainty. This effect is localised mostly near the equilibrium line.
David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias
The Cryosphere, 16, 219–236, https://doi.org/10.5194/tc-16-219-2022, https://doi.org/10.5194/tc-16-219-2022, 2022
Short summary
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.
Andy Aschwanden, Timothy C. Bartholomaus, Douglas J. Brinkerhoff, and Martin Truffer
The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, https://doi.org/10.5194/tc-15-5705-2021, 2021
Short summary
Short summary
Estimating how much ice loss from Greenland and Antarctica will contribute to sea level rise is of critical societal importance. However, our analysis shows that recent efforts are not trustworthy because the models fail at reproducing contemporary ice melt. Here we present a roadmap towards making more credible estimates of ice sheet melt.
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021, https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.
Joel Harper, Toby Meierbachtol, Neil Humphrey, Jun Saito, and Aidan Stansberry
The Cryosphere, 15, 5409–5421, https://doi.org/10.5194/tc-15-5409-2021, https://doi.org/10.5194/tc-15-5409-2021, 2021
Short summary
Short summary
We use surface and borehole measurements to investigate the generation and fate of basal meltwater in the ablation zone of western Greenland. The rate of basal meltwater generation at borehole study sites increases by up to 20 % over the winter period. Accommodation of all basal meltwater by expansion of isolated subglacial cavities is implausible. Other sinks for water do not likely balance basal meltwater generation, implying water evacuation through a connected drainage system in winter.
Andreas Born and Alexander Robinson
The Cryosphere, 15, 4539–4556, https://doi.org/10.5194/tc-15-4539-2021, https://doi.org/10.5194/tc-15-4539-2021, 2021
Short summary
Short summary
Ice penetrating radar reflections from the Greenland ice sheet are the best available record of past accumulation and how these layers have been deformed over time by the flow of ice. Direct simulations of this archive hold great promise for improving our models and for uncovering details of ice sheet dynamics that neither models nor data could achieve alone. We present the first three-dimensional ice sheet model that explicitly simulates individual layers of accumulation and how they deform.
Tamara Annina Gerber, Christine Schøtt Hvidberg, Sune Olander Rasmussen, Steven Franke, Giulia Sinnl, Aslak Grinsted, Daniela Jansen, and Dorthe Dahl-Jensen
The Cryosphere, 15, 3655–3679, https://doi.org/10.5194/tc-15-3655-2021, https://doi.org/10.5194/tc-15-3655-2021, 2021
Short summary
Short summary
We simulate the ice flow in the onset region of the Northeast Greenland Ice Stream to determine the source area and past accumulation rates of ice found in the EastGRIP ice core. This information is required to correct for bias in ice-core records introduced by the upstream flow effects. Our results reveal that the increasing accumulation rate with increasing upstream distance is predominantly responsible for the constant annual layer thicknesses observed in the upper 900 m of the ice core.
Ole Zeising and Angelika Humbert
The Cryosphere, 15, 3119–3128, https://doi.org/10.5194/tc-15-3119-2021, https://doi.org/10.5194/tc-15-3119-2021, 2021
Short summary
Short summary
Greenland’s largest ice stream – the Northeast Greenland Ice Stream (NEGIS) – extends far into the interior of the ice sheet. Basal meltwater acts as a lubricant for glaciers and sustains sliding. Hence, observations of basal melt rates are of high interest. We performed two time series of precise ground-based radar measurements in the upstream region of NEGIS and found high melt rates of 0.19 ± 0.04 m per year.
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021, https://doi.org/10.5194/tc-15-3013-2021, 2021
Short summary
Short summary
Without any reduction in our greenhouse gas emissions, the Greenland ice sheet surface mass loss can be brought in line with a medium-mitigation emissions scenario by reducing the solar downward flux at the top of the atmosphere by 1.5 %. In addition to reducing global warming, these solar geoengineering measures also dampen the well-known positive melt–albedo feedback over the ice sheet by 6 %. However, only stronger reductions in solar radiation could maintain a stable ice sheet in 2100.
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Short summary
Here, we automatically detect buried lakes (meltwater lakes buried below layers of snow) across the Greenland Ice Sheet, providing insight into a poorly studied meltwater feature. For 2018 and 2019, we compare areal extent of buried lakes. We find greater buried lake extent in 2019, especially in northern Greenland, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that buried lakes form via different processes across Greenland.
Tobias Zolles and Andreas Born
The Cryosphere, 15, 2917–2938, https://doi.org/10.5194/tc-15-2917-2021, https://doi.org/10.5194/tc-15-2917-2021, 2021
Short summary
Short summary
We investigate the sensitivity of a glacier surface mass and the energy balance model of the Greenland ice sheet for the cold period of the Last Glacial Maximum (LGM) and the present-day climate. The results show that the model sensitivity changes with climate. While for present-day simulations inclusions of sublimation and hoar formation are of minor importance, they cannot be neglected during the LGM. To simulate the surface mass balance over long timescales, a water vapor scheme is necessary.
Paolo Colosio, Marco Tedesco, Roberto Ranzi, and Xavier Fettweis
The Cryosphere, 15, 2623–2646, https://doi.org/10.5194/tc-15-2623-2021, https://doi.org/10.5194/tc-15-2623-2021, 2021
Short summary
Short summary
We use a new satellite dataset to study the spatiotemporal evolution of surface melting over Greenland at an enhanced resolution of 3.125 km. Using meteorological data and the MAR model, we observe that a dynamic algorithm can best detect surface melting. We found that the melting season is elongating, the melt extent is increasing and that high-resolution data better describe the spatiotemporal evolution of the melting season, which is crucial to improve estimates of sea level rise.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021, https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
Short summary
Absorption of solar radiation is often limited to the surface in regional climate models. Therefore, we have implemented a new radiative transfer scheme in the model RACMO2, which allows for internal heating and improves the surface reflectivity. Here, we evaluate its impact on the surface mass and energy budget and (sub)surface temperature, by using observations and the previous model version for the Greenland ice sheet. New results match better with observations and introduce subsurface melt.
Corinne L. Benedek and Ian C. Willis
The Cryosphere, 15, 1587–1606, https://doi.org/10.5194/tc-15-1587-2021, https://doi.org/10.5194/tc-15-1587-2021, 2021
Short summary
Short summary
The surface of the Greenland Ice Sheet contains thousands of surface lakes. These lakes can deliver water through cracks to the ice sheet base and influence the speed of ice flow. Here we look at instances of lakes draining in the middle of winter using the Sentinel-1 radar satellites. Winter-draining lakes can help us understand the mechanisms for lake drainages throughout the year and can point to winter movement of water that will impact our understanding of ice sheet hydrology.
Nathan Maier, Florent Gimbert, Fabien Gillet-Chaulet, and Adrien Gilbert
The Cryosphere, 15, 1435–1451, https://doi.org/10.5194/tc-15-1435-2021, https://doi.org/10.5194/tc-15-1435-2021, 2021
Short summary
Short summary
In Greenland, ice motion and the surface geometry depend on the friction at the bed. We use satellite measurements and modeling to determine how ice speeds and friction are related across the ice sheet. The relationships indicate that ice flowing over bed bumps sets the friction across most of the ice sheet's on-land regions. This result helps simplify and improve our understanding of how ice motion will change in the future.
Aurélien Quiquet and Christophe Dumas
The Cryosphere, 15, 1015–1030, https://doi.org/10.5194/tc-15-1015-2021, https://doi.org/10.5194/tc-15-1015-2021, 2021
Short summary
Short summary
We present here the GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for CMIP6 for Greenland. The project aims to quantify the ice sheet contribution to global sea level rise for the next century. We show an important spread in the simulated Greenland ice loss in the future depending on the climate forcing used. Mass loss is primarily driven by atmospheric warming, while oceanic forcing contributes to a relatively smaller uncertainty in our simulations.
Cited articles
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021 (data available at: ftp://ftp.climato.be/).
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014.
Andrews, L. C., Poinar, K., and Trunz, C.: Controls on Greenland moulin geometry and evolution from the Moulin Shape model, The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, 2022.
Baillarin, S., Meygret, A., Dechoz, C., Petrucci, B., Lacherade, S.,Trémas, T., Isola, C., Martimort, P., and Spoto, F.: Sentinel-2 level 1 products and image processing performances, IEEE international geoscience and remote sensing symposium, Munich, Germany, 22–27 July 2012, 7003–7006, https://doi.org/10.1109/IGARSS.2012.6351959, 2012.
Banwell, A. F., Cabellero, M., Arnold, N., Glasser, N., Cathles, L. M., and MacAyeal, D.: Supraglacial lakes on the Larsen B Ice Shelf, Antarctica, and Paakitsoq Region, Greenland: a comparative study, Ann. Glaciol., 55, 66, https://doi.org/10.3189/2014AoG66A049, 2014.
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/ngeo863, 2010.
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., and King, M. A.: Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity, J. Geophys. Res.-Earth, 117, F03002,, https://doi.org/10.1029/2011JF002220, 2012.
Boghosian, A. L., Pitcher, L. H., Smith, L. C., Kosh, E., Alexander, P. M., Tedesco, M., and Bell, R. E.: Development of ice-shelf estuaries promotes fractures and calving, Nat. Geosci., 14, 899–905, https://doi.org/10.1038/s41561-021-00837-7, 2021.
Box, J. E. and Decker, D. T.: Greenland marine-terminating glacier area changes: 2000–2010, Ann. Glaciol., 52, 91–98, https://doi.org/10.3189/172756411799096312, 2011.
Carr, J. R., Vieli, A., Stokes, C., Jamieson, S., Palmer, S., Christoffersen, P., Dowdeswell, J., Nick, F., Blankenship, D., and Young, D.: Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland, J. Glaciol., 61, 137–150, https://doi.org/10.3189/2015JoG14J128, 2015.
Catania, G. A., Neumann, T. A., and Price, S. F.: Characterizing englacial drainage in the ablation zone of the Greenland ice sheet, J. Glaciol., 54, 567–578, https://doi.org/10.3189/002214308786570854, 2008.
Christoffersen, P., Bougamont, M., Hubbard, A., Doyle, S. H., Grigsby, S., and Pettersson, R.: Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture, Nat. Commun., 9, 1064, https://doi.org/10.1038/s41467-018-03420-8, 2018.
Chu, V. W.: Greenland ice sheet hydrology: A review, Prog. Phys. Geogr., 38, 19–54, https://doi.org/10.1177/0309133313507075, 2014.
Copernicus: Copernicus Open Access Hub, https://scihub.copernicus.eu, last access: 15 December 2022.
Corr, D., Leeson, A., McMillan, M., Zhang, C., and Barnes, T.: An inventory of supraglacial lakes and channels across the West Antarctic Ice Sheet, Earth Syst. Sci. Data, 14, 209–228, https://doi.org/10.5194/essd-14-209-2022, 2022.
Crozier, J., Karlstrom, L., and Yang, K.: Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet, The Cryosphere, 12, 3383–3407, https://doi.org/10.5194/tc-12-3383-2018, 2018.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, ISBN 978-0-12-369461-4, 2010.
Culberg, R., Schroeder, D. M., and Chu, W.: Extreme melt season ice layers reduce firn permeability across Greenland, Nat. Commun., 12, 2336, https://doi.org/10.1038/s41467-021-22656-5, 2021.
Culberg, R., Chu, W., and Schroeder, D. M.: Shallow Fracture Buffers High Elevation Runoff in Northwest Greenland, Geophys. Res. Lett., 49, e2022GL101151, https://doi.org/10.1029/2022GL101151, 2022.
Cullather, R. I., Andrews, L. C., Croteau, M. J., Digirolamo, N. E., Hall, D. K., Lim, Y. K., Loomis, B. D., Shuman, C. A., and Nowicki, S. M.: Anomalous circulation in July 2019 resulting in mass loss on the Greenland Ice Sheet, Geophys. Res. Lett., 47, e2020GL087263, https://doi.org/10.1029/2020GL087263, 2020.
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., and Nienow, P. W.: The influence of hydrology on the dynamics of land-terminating sectors of the Greenland ice sheet, Front. Earth Sci., 7, 10, https://doi.org/10.3389/feart.2019.00010, 2019.
Dell, R., Banwell, A. F., Willis, I., Arnold, N., Halberstadt, A. R. W., Chudley, T. R., and Pritchard, H.: Supervised classification of slush and ponded water on Antarctic ice shelves using Landsat 8 imagery, J. Glaciol., 68, 401–414, https://doi.org/10.1017/jog.2021.114, 2022.
Dow, C., Kulessa, B., Rutt, I., Doyle, S. H., and Hubbard, A.: Upper bounds on subglacial channel development for interior regions of the Greenland ice sheet, J. Glaciol., 60, 1044–1052, https://doi.org/10.3189/2014JoG14J093, 2014.
Dunmire, D., Banwell, A. F., Wever, N., Lenaerts, J. T. M., and Datta, R. T.: Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet, The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, 2021.
Elmes, A., Levy, C., Erb, A., Hall, D. K., Scambos, T. A., DiGirolamo, N., and Schaaf, C.: Consequences of the 2019 greenland ice sheet melt episode on albedo, Remote Sensing, 13, 227, https://doi.org/10.3390/rs13020227, 2021.
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017.
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., Born, A., Box, J. E., Delhasse, A., Fujita, K., Gierz, P., Goelzer, H., Hanna, E., Hashimoto, A., Huybrechts, P., Kapsch, M.-L., King, M. D., Kittel, C., Lang, C., Langen, P. L., Lenaerts, J. T. M., Liston, G. E., Lohmann, G., Mernild, S. H., Mikolajewicz, U., Modali, K., Mottram, R. H., Niwano, M., Noël, B., Ryan, J. C., Smith, A., Streffing, J., Tedesco, M., van de Berg, W. J., van den Broeke, M., van de Wal, R. S. W., van Kampenhout, L., Wilton, D., Wouters, B., Ziemen, F., and Zolles, T.: GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet, The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, 2020.
Fettweis, X., Hofer, S., Séférian, R., Amory, C., Delhasse, A., Doutreloup, S., Kittel, C., Lang, C., Van Bever, J., Veillon, F., and Irvine, P.: Brief communication: Reduction in the future Greenland ice sheet surface melt with the help of solar geoengineering , The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021, 2021 (data available at: ftp://ftp.climato.be/).
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities, National Snow and Ice Data Center [data set], https://doi.org/10.5067/6II6VW8LLWJ7, 2019.
Gleason, C. J., Smith, L. C., Chu, V. W., Legleiter, C. J., Pitcher, L. H., Overstreet, B. T., Rennermalm, A. K., Forster, R. R., and Yang, K.: Characterizing supraglacial meltwater channel hydraulics on the Greenland Ice Sheet from in situ observations, Earth Surf. Proc. Land., 41, 2111–2122, https://doi.org/10.1002/esp.3977, 2016.
Gleason, C. J., Yang, K., Feng, D., Smith, L. C., Liu, K., Pitcher, L. H., Chu, V. W., Cooper, M. G., Overstreet, B. T., and Rennermalm, A. K.: Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network, The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, 2021.
Gledhill, L. A. and Williamson, A. G.: Inland advance of supraglacial lakes in north-west Greenland under recent climatic warming, Ann. Glaciol., 59, 66–82, https://doi.org/10.1017/aog.2017.31, 2018.
Goelzer, H., Huybrechts, P., Fürst, J. J., Nick, F. M., Andersen, M. L., Edwards, T. L., Fettweis, X., Payne, A. J., and Shannon, S.: Sensitivity of Greenland ice sheet projections to model formulations, J. Glaciol., 59, 733–749, https://doi.org/10.3189/2013JoG12J182, 2013.
Gray, L.: Brief communication: Glacier run-off estimation using altimetry-derived basin volume change: case study at Humboldt Glacier, northwest Greenland, The Cryosphere, 15, 1005–1014, https://doi.org/10.5194/tc-15-1005-2021, 2021.
Greuell, W. and Knap, W. H.: Remote sensing of the albedo and detection of the slush line on the Greenland ice sheet, J. Geophys. Res.-Atmos., 105, 15567–15576, https://doi.org/10.1029/1999JD901162, 2000.
Gudmundsson, G. H.: Transmission of basal variability to a glacier surface, J. Geophys. Res.-Sol. Ea., 108, 2253, https://doi.org/10.1029/2002JB002107, 2003.
Gudmundsson, G. H., Raymond, C. F., and Bindschadler, R.: The origin and longevity of flow stripes on Antarctic ice streams, Ann. Glaciol., 27, 145–152, https://doi.org/10.3189/1998AoG27-1-145-152, 1998.
Hanna, E., Mernild, S. H., Cappelen, J., and Steffen, K.: Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records, Environ. Res. Lett., 7, 045404, https://doi.org/10.1088/1748-9326/7/4/045404, 2012.
Hanna, E., Cappelen, J., Fettweis, X., Mernild, S. H., Mote, T. L., Mottram, R., Steffen, K., Ballinger, T. J., and Hall, R. J.: Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change, Int. J. Climatol., 41, E1336–E1352, https://doi.org/10.1002/joc.6771, 2021.
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.: MEaSUREs MODIS Mosaic of Greenland 2005 (MOG2005) Image Map, Version 1, Boulder, Colorado, NSIDC: National Snow and Ice Data Center [data set] , https://doi.org/10.5067/IAGYM8Q26QRE, 2013.
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.: MEaSUREs MODIS Mosaic of Greenland (MOG) 2005, 2010, and 2015 Image Maps, Version 2, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/9ZO79PHOTYE5, 2018.
Hill, E. A., Carr, J. R., and Stokes, C. R.: A review of recent changes in major marine-terminating outlet glaciers in Northern Greenland, Front. Earth Sci., 4, 111, https://doi.org/10.3389/feart.2016.00111, 2017.
Hill, E. A., Carr, J. R., Stokes, C. R., and Gudmundsson, G. H.: Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015, The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, 2018.
Hillebrand, T. R., Hoffman, M. J., Perego, M., Price, S. F., and Howat, I. M.: The contribution of Humboldt Glacier, northern Greenland, to sea-level rise through 2100 constrained by recent observations of speedup and retreat, The Cryosphere, 16, 4679–4700, https://doi.org/10.5194/tc-16-4679-2022, 2022.
Hochreuther, P., Neckel, N., Reimann, N., Humbert, A., and Braun, M.: Fully automated detection of supraglacial lake area for Northeast Greenland using sentinel-2 time-series, Remote Sensing, 13, 205, https://doi.org/10.3390/rs13020205, 2021.
Hoffman, M., Catania, G., Neumann, T., Andrews, L., and Rumrill, J.: Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet, J. Geophys. Res.-Earth, 116, F04035, https://doi.org/10.1029/2010JF001934, 2011.
Holmes, G. W.: Morphology and hydrology of the Mint Julep area, southwest Greenland, in: Project Mint Julep Investigation of Smooth Ice Areas of the Greenland Ice Cap, 1953, Part II Special Scientific Reports, Arctic, Desert, Tropic Information Center, Research Studies Institute, Air University, 1955
Ignéczi, Á., Sole, A. J., Livingstone, S. J., Leeson, A. A., Fettweis, X., Selmes, N., Gourmelen, N., and Briggs, K.: Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century, Geophys. Res. Lett., 43, 9729–9738, https://doi.org/10.1002/2016GL070338, 2016.
Ignéczi, Á., Sole, A. J., Livingstone, S. J., Ng, F. S., and Yang, K.: Greenland Ice Sheet surface topography and drainage structure controlled by the transfer of basal variability, Front. Earth Sci., 6, 101, https://doi.org/10.3389/feart.2018.00101, 2018.
Irvine-Fynn, T. D., Hodson, A. J., Moorman, B. J., Vatne, G., and Hubbard, A. L.: Polythermal glacier hydrology: A review, Rev. Geophys., 49, RG4002, https://doi.org/10.1029/2010RG000350, 2011.
Joughin, I., Kwok, R., and Fahnestock, M.: Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland, J. Glaciol., 42, 564–575, https://doi.org/10.3189/S0022143000003543, 1996.
Joughin, I., Fahnestock, M., Kwok, R., Gogineni, P., and Allen, C.: Ice flow in the Humboldt, Petermann, and Ryder Glaciers, North Greenland, J. Glaciol., 45, 231–341, https://doi.org/10.3189/S0022143000001738, 1999.
Joughin, I., Das, S. B., Flowers, G. E., Behn, M. D., Alley, R. B., King, M. A., Smith, B. E., Bamber, J. L., van den Broeke, M. R., and van Angelen, J. H.: Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability, The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, 2013.
Kamb, B.: Glacier surge mechanism based on linked cavity configuration of the basal water conduit system, J. Geophys. Res.-Sol. Ea., 92, 9083–9100, https://doi.org/10.1029/JB092iB09p09083, 1987.
Karamouz, M., Nazif, S., and Falahi, M.:. Hydrology and hydroclimatology: principles and applications, CRC Press, ISBN 978-1-4665-1220-7, https://doi.org/10.1201/b13771, 2013.
Karlstrom, L. and Yang, K.: Fluvial supraglacial landscape evolution on the Greenland Ice Sheet, Geophys. Res. Lett., 43, 2683–2692, https://doi.org/10.1002/2016GL067697, 2016.
Koenig, L. S., Lampkin, D. J., Montgomery, L. N., Hamilton, S. L., Turrin, J. B., Joseph, C. A., Moutsafa, S. E., Panzer, B., Casey, K. A., Paden, J. D., Leuschen, C., and Gogineni, P.: Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet, The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015, 2015.
Krawczynski, M. J., Behn, M. D., Das, S. B., and Joughin, I.: Constraints on the lake volume required for hydro-fracture through ice sheets, Geophys. Res. Lett., 36, L10501, https://doi.org/10.1029/2008GL036765, 2009.
Lampkin, D. and VanderBerg, J.: A preliminary investigation of the influence of basal and surface topography on supraglacial lake distribution near Jakobshavn Isbrae, western Greenland, Hydrol. Process., 25, 3347–3355, https://doi.org/10.1002/hyp.8170, 2011.
Lampkin, D. and VanderBerg, J.: Supraglacial melt channel networks in the Jakobshavn Isbræ region during the 2007 melt season, Hydrol. Process., 28, 6038–6053, https://doi.org/10.1002/hyp.10085, 2014.
Law, R., Arnold, N., Benedek, C., Tedesco, M., Banwell, A., and Willis, I.: Over-winter persistence of supraglacial lakes on the Greenland Ice Sheet: results and insights from a new model, J. Glaciol., 66, 362–372, https://doi.org/10.1017/jog.2020.7, 2020.
Leeson, A., Shepherd, A., Briggs, K., Howat, I., Fettweis, X., Morlighem, M., and Rignot, E.: Supraglacial lakes on the Greenland ice sheet advance inland under warming climate, Nat. Clim. Change, 5, 51–55, https://doi.org/10.1038/nclimate2463, 2015.
Li, Y., Yang, K., Gao, S., Smith, L. C., Fettweis, X., and Li, M.: Surface meltwater runoff routing through a coupled supraglacial-proglacial drainage system, Inglefield Land, northwest Greenland, Int. J. Appl. Earth Obs., 106, 102647, https://doi.org/10.1016/j.jag.2021.102647, 2022.
Lim, Y.-K., Schubert, S. D., Nowicki, S. M., Lee, J. N., Molod, A. M., Cullather, R. I., Zhao, B., and Velicogna, I.: Atmospheric summer teleconnections and Greenland Ice Sheet surface mass variations: Insights from MERRA-2, Environ. Res. Lett., 11, 024002, https://doi.org/10.1088/1748-9326/11/2/024002, 2016.
Livingstone, S. J., Chu, W., Ely, J. C., and Kingslake, J.: Paleofluvial and subglacial channel networks beneath Humboldt Glacier, Greenland, Geology, 45, 551–554, https://doi.org/10.1130/G38860.1, 2017.
Lu, Y., Yang, K., Lu, X., Smith, L. C., Sole, A. J., Livingstone, S. J., Fettweis, X., and Li, M.: Diverse supraglacial drainage patterns on the Devon ice Cap, Arctic Canada, J. Maps, 16, 834–846, https://doi.org/10.1080/17445647.2020.1838353, 2020.
Lu, Y., Yang, K., Lu, X., Li, Y., Gao, S., Mao, W., and Li, M.: Response of supraglacial rivers and lakes to ice flow and surface melt on the northeast Greenland ice sheet during the 2017 melt season, J. Hydrol., 602, 126750, https://doi.org/10.1016/j.jhydrol.2021.126750, 2021.
Macdonald, G., Banwell, A., and MacAyeal, D.: Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland, Ann. Glaciol., 59, 56–65, https://https://doi.org/10.1017/aog.2018.9, 2018.
MacFerrin, M., Machguth, H., As, D. v., Charalampidis, C., Stevens, C., Heilig, A., Vandecrux, B., Langen, P., Mottram, R., and Fettweis, X.: Rapid expansion of Greenland's low-permeability ice slabs, Nature, 573, 403–407, https://doi.org/10.1038/s41586-019-1550-3, 2019.
Marston, R. A.: Supraglacial stream dynamics on the Juneau Icefield, Ann. Assoc. Am. Geogr., 73, 597-608, https://doi.org/10.1111/j.1467-8306.1983.tb01861.x, 1983.
McFeeters, S. K.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17, 1425–1432, https://doi.org/10.1080/01431169608948714, 1996.
McLeod, J. T. and Mote, T. L.: Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland ice sheet, Int. J. Climatol., 36, 1484–1499, https://doi.org/10.1002/joc.4440, 2016.
Mejia, J., Gulley, J., Trunz, C., Covington, M. D., Bartholomaus, T., Breithaupt, C., Xie, S., and Dixon, T. H.: Moulin density controls the timing of peak pressurization within the Greenland Ice Sheet's subglacial drainage system, Geophys. Res. Lett., 49, e2022GL100058, https://doi.org/10.1029/2022GL100058, 2022.
Mikkelsen, A. B., Hubbard, A., MacFerrin, M., Box, J. E., Doyle, S. H., Fitzpatrick, A., Hasholt, B., Bailey, H. L., Lindbäck, K., and Pettersson, R.: Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention, The Cryosphere, 10, 1147–1159, https://doi.org/10.5194/tc-10-1147-2016, 2016.
Moon, T. A., Tedesco, M., Box, J., Cappelen, J., Fausto, R., Fettweis, X., Korsgaard, N., Loomis, B., Mankoff, K., and Mote, T.: Arctic Report Card 2020: Greenland Ice Sheet, National Snow and Ice Data Center (U.S.), University of Colorado Boulder, United States, National Oceanic and Atmospheric Administration. Office of Oceanic and Atmospheric Research, https://doi.org/10.25923/ms78-g612, 2020
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., and Dorschel, B.: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation, Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017.
Morlighem, M., et al.: IceBridge BedMachine Greenland, Version 4. [Bed Topography], Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/VLJ5YXKCNGXO, 2021
Mouginot, J., Rignot, E., Bjørk, A. A., Van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Moussavi, M. S., Abdalati, W., Pope, A., Scambos, T., Tedesco, M., MacFerrin, M., and Grigsby, S.: Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery, Remote Sens. Environ., 183, 294–303, https://doi.org/10.1016/j.rse.2016.05.024, 2016.
Ng, F. S., Ignéczi, Á., Sole, A. J., and Livingstone, S. J.: Response of surface topography to basal variability along glacial flowlines, J. Geophys. Res.-Earth, 123, 2319–2340, https://doi.org/10.1029/2017JF004555, 2018.
Nienow, P., Sole, A., Slater, D. A., and Cowton, T.: Recent advances in our understanding of the role of meltwater in the Greenland Ice Sheet system, Current Climate Change Reports, 3, 330–344, https://doi.org/10.1007/s40641-017-0083-9, 2017.
Noël, B., van de Berg, W. J., Lhermitte, S., and van den Broeke, M. R.: Rapid ablation zone expansion amplifies north Greenland mass loss, Science Advances, 5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123, 2019.
Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J., and van den Broeke, M. R.: A 21st century warming threshold for sustained Greenland ice sheet mass loss, Geophys. Res. Lett., 48, e2020GL090471, https://doi.org/10.1029/2020GL090471, 2021.
njuRS: River_detection, GitHub [data set], https://github.com/njuRS/River_detection, last access: 15 December 2022.
Oswald, G. K. and Gogineni, S.: Mapping basal melt under the northern Greenland Ice Sheet, IEEE T. Geosci. Remote, 50, 585–592, https://doi.org/10.1109/TGRS.2011.2162072, 2011.
Otto, J., Holmes, F. A., and Kirchner, N.: Supraglacial lake expansion, intensified lake drainage frequency, and first observation of coupled lake drainage, during 1985–2020 at Ryder Glacier, Northern Greenland, Front. Earth Sci., 10, 978137, https://doi.org/10.3389/feart.2022.978137, 2022.
Pitcher, L. H. and Smith, L. C.: Supraglacial streams and rivers, Annu. Rev. Earth Planet. Sci., 47, 421–452, https://doi.org/10.1146/annurev-earth-053018-060212, 2019.
Poinar, K., Joughin, I., Das, S. B., Behn, M. D., Lenaerts, J. T., and Van Den Broeke, M. R.: Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland, Geophys. Res. Lett., 42, 1800–1807, https://doi.org/10.1002/2015GL063192, 2015.
Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., and Grigsby, S.: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods, The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, 2016.
Rahmstorf, S. and Coumou, D.: Increase of extreme events in a warming world, P. Natl. Acad. Sci. USA, 108, 17905–17909, https://doi.org/10.1073/pnas.1101766108, 2011.
Raymond, M. J. and Gudmundsson, G. H.: On the relationship between surface and basal properties on glaciers, ice sheets, and ice streams, J. Geophys. Res.-Sol. Ea., 110, B08411, https://doi.org/10.1029/2005JB003681, 2005.
Rennermalm, A. K., Smith, L. C., Chu, V. W., Box, J. E., Forster, R. R., Van den Broeke, M. R., Van As, D., and Moustafa, S. E.: Evidence of meltwater retention within the Greenland ice sheet, The Cryosphere, 7, 1433–1445, https://doi.org/10.5194/tc-7-1433-2013, 2013.
Rignot, E. and Kanagaratnam, P.: Changes in the velocity structure of the Greenland Ice Sheet, Science, 311, 986–990, https://doi.org/10.1126/science.1121381, 2006.
Rignot, E., Gogineni, S., Joughin, I., and Krabill, W.: Contribution to the glaciology of northern Greenland from satellite radar interferometry, J. Geophys. Res., 106, 34007–34019, https://doi.org/10.1029/2001JD900071, 2001.
Rignot, E., An, L., Chauche, N., Morlighem, M., Jeong, S., Wood, M., Mouginot, J., Willis, J. K., Klaucke, I., and Weinrebe, W.: Retreat of Humboldt Gletscher, North Greenland, driven by undercutting from a warmer ocean, Geophys. Res. Lett., 48, e2020GL091342, https://doi.org/10.1029/2020GL091342, 2021.
Riihelä, A., King, M. D., and Anttila, K.: The surface albedo of the Greenland Ice Sheet between 1982 and 2015 from the CLARA-A2 dataset and its relationship to the ice sheet's surface mass balance, The Cryosphere, 13, 2597–2614, https://doi.org/10.5194/tc-13-2597-2019, 2019.
Rippin, D. and Rawlins, L.: Supraglacial River Networks, In International Encyclopedia of Geography, edited by: Richardson, D., Castree, N., Goodchild, M. F., Kobayashi, A., Liu, W., and Marston, R. A., https://doi.org/10.1002/9781118786352.wbieg2072, 2021.
Ruan, R., Chen, X., Zhao, J., Perrie, W., Mottram, R., Zhang, M., Diao, Y., Du, L., and Wu, L.: Decelerated Greenland Ice Sheet melt driven by positive summer North Atlantic oscillation, J. Geophys. Res.-Atmos., 124, 7633–7646, https://doi.org/10.1029/2019JD030689, 2019.
Ryan, J., Smith, L., Van As, D., Cooley, S., Cooper, M., Pitcher, L., and Hubbard, A.: Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure, Science Advances, 5, eaav3738, https://doi.org/10.1126/sciadv.aav3738, 2019.
Ryan, J. C., Hubbard, A., Stibal, M., Irvine-Fynn, T. D., Cook, J., Smith, L. C., Cameron, K., and Box, J.: Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities, Nat. Commun., 9, 1065, https://doi.org/10.1038/s41467-018-03353-2, 2018.
Sasgen, I., Wouters, B., Gardner, A. S., King, M. D., Tedesco, M., Landerer, F. W., Dahle, C., Save, H., and Fettweis, X.: Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites, Commun. Earth Environ., 1, 1–8, https://doi.org/10.1038/s43247-020-0010-1, 2020.
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.
Schröder, L., Neckel, N., Zindler, R., and Humbert, A.: Perennial supraglacial lakes in Northeast Greenland observed by polarimetric SAR, Remote Sensing, 12, 2798, https://doi.org/10.3390/rs12172798, 2020.
Selmes, N., Murray, T., and James, T.: Fast draining lakes on the Greenland Ice Sheet, Geophys. Res. Lett., 38, L15501, https://doi.org/10.1029/2011GL047872, 2011.
Slater, T., Shepherd, A., McMillan, M., Leeson, A., Gilbert, L., Muir, A., Munneke, P. K., Noël, B., Fettweis, X., and van den Broeke, M.: Increased variability in Greenland Ice Sheet runoff from satellite observations, Nat. Commun., 12, 6069, https://doi.org/10.1038/s41467-021-26229-4, 2021.
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H., Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T., and Moustafa, S. E.: Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet, P. Natl. Acad. Sci. USA, 112, 1001–1006, https://doi.org/10.1073/pnas.1413024112, 2015.
Smith, L. C., Yang, K., Pitcher, L. H., Overstreet, B. T., Chu, V. W., Rennermalm, Å. K., Ryan, J. C., Cooper, M. G., Gleason, C. J., and Tedesco, M.: Direct measurements of meltwater runoff on the Greenland ice sheet surface, P. Natl. Acad. Sci. USA, 114, E10622–E10631, https://doi.org/10.1073/pnas.1707743114, 2017.
Sole, A. J., Mair, D. W. F., Nienow, P. W., Bartholomew, I., King, M., Burke, M. J., and Joughin, I.: Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt–induced changes in subglacial hydrology, J. Geophys. Res.-Earth, 116, F03014, https://doi.org/10.1029/2010JF001948, 2011.
Stokes, C. R., Sanderson, J. E., Miles, B. W. J. Jamieson, S. S., and Leeson, A. A.: Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet, Sci. Rep., 9, 13823, https://doi.org/10.1038/s41598-019-50343-5, 2019.
Tedesco, M. and Fettweis, X.: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet, The Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020, 2020.
Tedesco, M., Doherty, S., Fettweis, X., Alexander, P., Jeyaratnam, J., and Stroeve, J.: The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100), The Cryosphere, 10, 477–496, https://doi.org/10.5194/tc-10-477-2016, 2016.
Tedesco, M., Box, J. E., Capplelen, J., Fausto, R. S., Fettweis, X., Hansen, K., Mote, T., Sasgen, I., Smeets, C. J. P. P., van As, D., van de Wal, R. S. W., and Velicogna, I.: NOAA Arctic Report Card 2018: Greenland Ice Sheet in Arctic Report Card 2017, https://arctic.noaa.gov/Report-Card/Report-Card-2017 (last access: 20 November 2022), 2017.
Tedesco, M., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Anderson, J. K., Mote, T., Smeets, C. J. P. P., van As, D., and van de Wal, R. S. W.: NOAA Arctic Report Card 2018: Greenland Ice Sheet in Arctic Report Card 2018, https://arctic.noaa.gov/Report-Card/Report-Card-2018 (last access: 20 November 2022), 2018.
Tedesco, M., Moon, T., Anderson, J. K., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Loomis, B., Mankoff, K. D., Mote, T., Smeets, C. J. P. P., van As, D., and van de Wal, R. S. W.: Greenland Ice Sheet in Arctic Report Card 2019, https://arctic.noaa.gov/Report-Card/Report-Card-2019 (last access: 21 November 2022), 2019.
The IMBIE Team: Mass balance of the Greenland Ice Sheet from 1992 to 2018, Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020.
Trusel, L. D., Das, S. B., Osman, M. B., Evans, M. J., Smith, B. E., Fettweis, X., McConnell, J. R., Noël, B. P., and van den Broeke, M. R.: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming, Nature, 564, 104–108, https://doi.org/10.1038/s41586-018-0752-4, 2018.
Turton, J. V., Hochreuther, P., Reimann, N., and Blau, M. T.: The distribution and evolution of supraglacial lakes on 79° N Glacier (north-eastern Greenland) and interannual climatic controls, The Cryosphere, 15, 3877–3896, https://doi.org/10.5194/tc-15-3877-2021, 2021.
van As, D., Bech Mikkelsen, A., Holtegaard Nielsen, M., Box, J. E., Claesson Liljedahl, L., Lindbäck, K., Pitcher, L., and Hasholt, B.: Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release, The Cryosphere, 11, 1371–1386, https://doi.org/10.5194/tc-11-1371-2017, 2017.
van den Broeke, M., Box, J., Fettweis, X., Hanna, E., Noël, B., Tedesco, M., van As, D., van de Berg, W. J., and van Kampenhout, L.: Greenland ice sheet surface mass loss: recent developments in observation and modeling, Current Climate Change Reports, 3, 345–356, https://doi.org/10.1007/s40641-017-0084-8, 2017.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Williamson, A. G., Arnold, N. S., Banwell, A. F., and Willis, I. C.: A Fully Automated Supraglacial lake area and volume Tracking (“FAST”) algorithm: Development and application using MODIS imagery of West Greenland, Remote Sens. Environ., 196, 113–133, https://doi.org/10.1016/j.rse.2017.04.032, 2017.
Williamson, A. G., Banwell, A. F., Willis, I. C., and Arnold, N. S.: Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland, The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, 2018.
Wyatt, F. R. and Sharp, M. J.: Linking surface hydrology to flow regimes and patterns of velocity variability on Devon Ice Cap, Nunavut, J. Glaciol., 61, 387–399, https://doi.org/10.3189/2015JoG14J109, 2015.
Yang, K. and Smith, L. C.: Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral–shape information in high-resolution satellite imagery, IEEE Geosci. Remote Se., 10, 801–805, https://doi.org/10.1109/LGRS.2012.2224316., 2012.
Yang, K., Smith, L. C., Chu, V. W., Gleason, C. J., and Li, M.: A caution on the use of surface digital elevation models to simulate supraglacial hydrology of the Greenland ice sheet, IEEE J. Sel. Top. Appl., 8, 5212–5224, https://doi.org/10.1109/JSTARS.2015.2483483., 2015.
Yang, K., Smith, L. C., Sole, A., Livingstone, S. J., Cheng, X., Chen, Z., and Li, M.: Supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery, Int. J. Appl. Earth Obs., 78, 1–13, https://doi.org/10.1016/j.jag.2019.01.008, 2019a.
Yang, K., Smith, L. C., Fettweis, X., Gleason, C. J., Lu, Y., and Li, M.: Surface meltwater runoff on the Greenland ice sheet estimated from remotely sensed supraglacial lake infilling rate, Remote Sens. Environ., 234, 111459, https://doi.org/10.1016/j.rse.2019.111459, 2019b.
Yang, K., Smith, L. C., Cooper, M. G., Pitcher, L. H., Van As, D., Lu, Y., Lu, X., and Li, M.: Seasonal evolution of supraglacial lakes and rivers on the southwest Greenland Ice Sheet, J. Glaciol., 67, 592–602, https://doi.org/10.1017/jog.2021.10, 2021.
Zhang, Q., Huai, B., van Den Broeke, M. R., Cappelen, J., Ding, M., Wang, Y., and Sun, W.: Temporal and Spatial Variability in Contemporary Greenland Warming (1958–2020), J. Climate, 35, 2755–2767, https://doi.org/10.1175/JCLI-D-21-0313.1, 2022.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.: Surface melt-induced acceleration of Greenland ice-sheet flow, Science, 297, 218–222, https://doi.org/10.1126/science.1072708, 2002.
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution...