Articles | Volume 17, issue 9
Research article
07 Sep 2023
Research article |  | 07 Sep 2023

Phase-field models of floe fracture in sea ice

Huy Dinh, Dimitrios Giannakis, Joanna Slawinska, and Georg Stadler

Related authors

Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
Hongyu Zhu, Noemi Petra, Georg Stadler, Tobin Isaac, Thomas J. R. Hughes, and Omar Ghattas
The Cryosphere, 10, 1477–1494,,, 2016
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
The effect of partial dissolution on sea-ice chemical transport: a combined model–observational study using poly- and perfluoroalkylated substances (PFASs)
Max Thomas, Briana Cate, Jack Garnett, Inga J. Smith, Martin Vancoppenolle, and Crispin Halsall
The Cryosphere, 17, 3193–3201,,, 2023
Short summary
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991,,, 2023
Short summary
Impact of atmospheric forcing uncertainties on Arctic and Antarctic sea ice simulations in CMIP6 OMIP models
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
The Cryosphere, 17, 1935–1965,,, 2023
Short summary
Arctic sea ice mass balance in a new coupled ice–ocean model using a brittle rheology framework
Guillaume Boutin, Einar Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere, 17, 617–638,,, 2023
Short summary
Wave-triggered breakup in the marginal ice zone generates lognormal floe size distributions: a simulation study
Nicolas Guillaume Alexandre Mokus and Fabien Montiel
The Cryosphere, 16, 4447–4472,,, 2022
Short summary

Cited articles

Alnaes, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS Project Version 1.5, Archive of Numerical Software, 3, 100,, 2015. a, b
Ambati, M., Gerasimov, T., and De Lorenzis, L.: A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383–405, 2015. a, b
Amestoy, P., Buttari, A., L'Excellent, J.-Y., and Mary, T.: Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM T. Math. Software, 45, 1–26,, 2019. a
Amor, H., Marigo, J.-J., and Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 1209–1229, 2009. a
Blockley, E., Vancoppenolle, M., Hunke, E., Bitz, C., Feltham, D., Lemieux, J.-F., Losch, M., Maisonnave, E., Notz, D., Rampal, P., and Tietsche, S.: The future of sea ice modeling: where do we go from here?, B. Am. Meteorol. Soc., 101, E1304–E1311, 2020. a
Short summary
We develop a numerical method to simulate the fracture in kilometer-sized chunks of floating ice in the ocean. Our approach uses a mathematical model that balances deformation energy against the energy required for fracture. We study the strength of ice chunks that contain random impurities due to prior damage or refreezing and what types of fractures are likely to occur. Our model shows that crack direction critically depends on the orientation of impurities relative to surrounding forces.