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Abstract. We develop a phase-field model of brittle fracture
to model fracture in sea ice floes. Phase fields allow for a
variational formulation of fracture by using an energy func-
tional that combines a linear elastic energy with a term mod-
eling the energetic cost of fracture. We study the fracture
strength of ice floes with stochastic thickness variations un-
der boundary forcings or displacements. Our approach mod-
els refrozen cracks or other linear ice impurities with stochas-
tic models for thickness profiles. We find that the orientation
of thickness variations is an important factor for the strength
of ice floes, and we study the distribution of critical stresses
leading to fracture. Potential applications to discrete element
method (DEM) simulations and field data from the ICEX
2018 campaign are discussed.

1 Introduction

The fracture of sea ice at intermediate scales, 100 m to 10 km,
impacts ice transport at the basin scale on the order of hun-
dreds to thousands of kilometers. However, current models
do not account for intermediate-scale fractures whose be-
havior may respond to recent shifts in climate trends. A
positive correlation between ice transport and deformation
(Lewis and Hutchings, 2019; Rampal et al., 2009), coupled
with the loss of thicker multi-year ice (Meier et al., 2014)
and falling ice concentrations, suggests that mechanically
weaker ice is fracturing faster, leading to earlier melt and in-
creased advection. At these scales, kilometer-long fractures
form across floes, contributing to lead formation and me-
chanically weaker sea ice with more open water. Advection
is enhanced as the weaker ice pack yields to winds. More-
over, darker, open water lowers the effective albedo and in-

creases melt. Incorporating such fracture processes either di-
rectly into discrete element methods (DEMs) or effectively
into continuum models has been an important, long-standing
challenge to improving sea ice predictions (Blockley et al.,
2020; Dempsey, 2000; Weiss and Dansereau, 2017).

Modeling intermediate-scale fractures is challenging, and
most smaller-scale observations are limited to the lab scale
on the order of 10m (Timco and Weeks, 2010; Dempsey
et al., 2018; Schulson and Duval, 2009; Coon et al., 1998).
In particular, available sea ice elastic moduli currently do not
account for scale effects and effective parameters due to re-
frozen leads and ridges.

Previous studies have connected fracture angles and
intermediate-scale models (Wilchinsky et al., 2011;
Ringeisen et al., 2021; Plante and Tremblay, 2021;
Dansereau et al., 2019; Hibler III and Schulson, 2000). One
of the first detailed measurements of intermediate-scale
deformation were made during the ICEX 2018 field cam-
paign (Parno et al., 2022), yet, simultaneous measurements
of forcings from the ocean and atmosphere and initial ice
stresses are not available. In response, we aim to develop a
model that can produce large ensembles of fracture events in
realistic settings of floe geometry, material parameters, and
forcing.

There are multiple candidates for fracture models in sea
ice with various strengths and drawbacks. Lu et al. (2015)
used an extended finite-element method (XFEM) that sim-
ulates fracture modeled by linear elastic fracture mechan-
ics (LEFMs). The formulation of this model and the in-
terpretation of lab-scale measurements of fracture param-
eters (Dempsey et al., 2018) are systematically based on
LEFMs. The authors present models that reproduce realis-
tic crack propagation. A drawback of this approach is that a
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crack tip must be inserted, but in general one does not know
where a crack nucleates. Particle or discrete element methods
(Tuhkuri and Polojirvi, 2018; Hopkins and Thorndike, 2006;
Kulchitsky et al., 2017; Jirdsek and Bazant, 1995) model
fracture as a process that emerges from the failure of elas-
tic bonds between particles or jointed edges between poly-
gons. They are widely used in modeling ice—structure inter-
actions. Computationally, fracture profiles from these meth-
ods are limited by particle or element geometry. In particular,
when there is a need to explore fracture profiles over floe ge-
ometries, such experiments are computationally prohibitive.
Montiel and Squire (2017) model floes as thin elastic disks
that fracture at critical stresses. Their fracture profiles are lin-
ear and must be parameterized. While this model could be
extended to other modes of fracture and floe shapes, the ad-
ditional step of parameterizing the space of one-dimensional
cracks on a two-dimensional floe is challenging. Finally, one
could assume fracture is scale invariant, and apply mod-
els from larger scales. There is extensive literature (Ram-
pal et al., 2019; Hutter et al., 2019; Bouchat et al., 2022) to
support such an approach. However, those models aggregate
intermediate-scale processes that emerge from the lab scale.
In other words, one would need to boldly conjecture that self-
similarity of fracture processes holds from thousands of kilo-
meters down to tens of meters.

Phase-field models of fracture (Bourdin et al., 2008) are an
appealing choice for modeling floe-scale fractures. They are
based on an energetic formulation of deformation and frac-
ture. They can directly incorporate lab-scale observations be-
cause they are based on Griffith’s theory of brittle fracture
(Griffith, 1921), the foundation of LEFMs. Phase fields reg-
ularize cracks and allow them to be described by the varia-
tions in a scalar phase field s. Phase-field models have been
used to explore crack profiles in different geometries, ma-
terials, and physical settings. In particular, researchers have
used phase fields to simulate processes such as fracture nu-
cleation, propagation, branching, and fragmentation (Ambati
et al., 2015) in a wide range of materials, including concrete,
steel, and biological tissue. The literature on these models
includes an extensive review of numerical implementations
(Wu et al., 2020) and extensions to a variety of elasticity
constitutive equations and types of failure. We aim to build
on these results and on lab-scale ice measurements to model
intermediate-scale sea ice fracture.

In this work, we investigate floe-scale fracture with phase-
field models. We simulate fracture under boundary force
or displacement conditions for a distribution of stochastic
ice thickness fields, which model refrozen ice cracks or ice
ridges. Our experiments show that the critical forcing at
which fracture occurs depends on the geometry of the thick-
ness anomalies and their relation to the forcing to which the
floe is subjected. Additionally, we discuss measurement data
from the ICEX 2018 expedition in fracture simulations and
prospects for incorporating physical fracture in discrete ele-
ment models.
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The outline of the paper is as follows. In Sect. 2, we dis-
cuss the phase-field model and numerical implementation.
In Sect. 3, we present our experiments on stochastic weak-
nesses. Finally, in Sect. 4, we consider future research direc-
tions.

2 Methods

In this section, we look at how phase-field models of brittle
fracture can be used to model kilometer-scale fractures. We
define a phase-field formulation of brittle fracture with lin-
ear elasticity in Sect. 2.1. In Sect. 2.2, we review a staggered
algorithm to solve the phase-field model formulation when
ice floes are subject to displacement or force boundary con-
ditions. We review sea ice parameters from the literature and
explain how we adapt them to our framework, and we dis-
cuss the implementation of the approach in the open-source
finite-element method (FEM) library FEniCS (Alnaes et al.,
2015) in Sect. 2.3 and 2.4.

2.1 Phase-field model of brittle fracture

We describe ice floe deformation using a linear constitutive
relation. The floe geometry is modeled by a two-dimensional
domain Q € R2, on which we consider displacement fields
u = (uy,uy). We assume that unbroken ice satisfies plane
stress linear elasticity equations; i.e., the stress tensor in-
duced by the strain tensor & := (Vu + VuT)/2 is

o = [Mr(e)I+2ue], (D)

where A and p are the Lamé parameters, tr(-) denotes the
trace operator, and I € R2%2 ig the identity matrix. The def-
inition 1 results in a corresponding elastic energy density
U(u) : Q — R defined as

()= %a o= % [k(tr(e))z + utr(e2)]. )

Constitutive relations other than Eq. (1) can be used, but in
this study we focus on a linear rheology and the correspond-
ing well-studied fracture process.

We use a phase-field model of quasi-static brittle fracture
developed by Bourdin et al. (2000). Their work builds on
Francfort and Marigo (1998), who developed an energetic
formulation of Griffith’s theory of brittle fracture. Francfort
and Marigo (1998) extended Griffith’s formulation by adding
a surface or fracture energy that describes the cost to create a
one-dimensional crack set I". In this approach, displacements
are allowed to be discontinuous across I'. Moreover, the sur-
face energy is the arc length of I" times the fracture toughness
G, the energetic cost per unit length to fracture material.

Determining a crack set I' that minimizes the total energy
is a numerically challenging problem (known as the free-
discontinuity problem; Farrell and Maurini, 2017), as the oc-
currence of fracture is part of the solution and thus a priori

https://doi.org/10.5194/tc-17-3883-2023



H. Dinh et al.: Phase-field ice floe fracture

unknown, making it difficult to resolve using a numerical dis-
cretization. As a remedy, Bourdin et al. (2000) propose an
approach that replaces the crack set with a continuous, scalar
phase field s : 2 — R, describing a diffusive crack profile.
The phase field takes values in the interval [0, 1]. Fracture
occurs where s =0, and ice is unbroken where s = 1. Be-
tween the two values, s transitions continuously. A length-
scale parameter £ controls the spread and smoothness of s
near a crack. Bourdin et al. (2000) show that as £ — 0 in the
case of linear elasticity, the O set of s converges to a minimiz-
ing crack I.

Combined with other constitutive relations, phase-field
models have also been used to capture different modes of
fracture (Ambati et al., 2015). The total energy £ underlying
these phase-field models is as follows:

Eu,s) = /(s2+n)\p(u)dx
Q

elastic energy

—i—G/ (i(l—s)2+e|vS|2> dx (3)
4¢ ’

Q

surface energy

where 0 < <« 1 is a dimensionless residual elasticity pa-
rameter, added to prevent loss of a unique minimizing # and
ellipticity. Note that £ is convex in u and convex in s but
not jointly convex in (u,s). The two terms in Eq. (3) rep-
resent the elastic energy and the surface energy, and min-
imizing £ balances these two energy contributions. Points
where s < 1 reduce the elastic energy but incur a cost in the
surface energy. Such points approximate discontinuous dis-
placements u and thus model full or partial diffusive cracks.
If £ is decreased, the surface energy puts a smaller penalty on
|Vs|, and thus minimizers tend to have thinner crack profiles,
i.e., regions where s changes from s = 1 to regions where
s &~ 0 (corresponding to undamaged and damaged regions
and cracks, respectively). Note that in practice, the phase-
field function s may also take small negative values or values
slightly larger than 1, which does not create any difficulties.

2.2 Staggered minimization algorithm

Following Bourdin et al. (2000), we use a staggered algo-
rithm to solve the minimization:

uelg%rslesg(u’ s)’ (4)

where U and S are spaces of sufficiently regular functions
that satisfy appropriate Dirichlet and Neumann boundary
conditions on the boundary 92. Typical Dirichlet conditions
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are
u=uypondQp C 12, (5a)
s=1on0d. (5b)

In Eq. (52), ug is a given displacement on a part of the bound-
ary 0Q2p C 9€2. The condition (5b) is the assumption of un-
damaged material on the boundary and is common in phase-
field models. On the remaining boundaries, natural (i.e., Neu-
mann) conditions are assumed for u.

The algorithm to solve Eq. (4) alternates between mini-
mizing with respect to u while keeping s fixed and mini-
mizing with respect to s while keeping u fixed. Since £ is
quadratic in u and s, these minimizations can be done ex-
actly. To be more precise, for fixed s, the displacement u
that minimizes £ must satisfy §,&(u, s) = 0; i.e., the varia-
tion with respect to u vanishes. Using integration by parts,
this results in the linear elasticity equation,

V-l(s®+ n)o]l=0on L, (6a)
u=ugyondQp, (6b)
on=00n0Q2\0Qp, (6¢)

where n is the unit normal on the boundary. The condition
(6¢) results from partial integration. When u is held fixed,
minimizing with respect to the phase fields s shows that the
minimizer must satisfy 8,€(u, s) = 0. Integration by parts
shows that this is equivalent to

LA 1 + @) = : Q (7a)
j— R— e — n

58 40 G 40 o3 a
s=1on08. (7b)

This equation shows that the elastic energy density drives the
phase-field solution. In particular, if V(u) =0, then s = 1;
i.e., the ice floe is undamaged. The staggered minimization
algorithm is summarized as Algorithm 1. It proceeds by al-
ternately solving Eq. (6) for fixed phase field s and solving
Eq. (7) for fixed displacement u. The algorithm terminates
either if the maximal update of the phase-field function is
less than a given threshold € or after a maximum number of
iterations N.

Algorithm 1 Staggered minimization for phase-field model
of fracture.

require N >0and 1 > € >0
setn=1,¢*=1,and sg =1
while n < N and € < ¢* do
Solve Eq. (6) for u
Solve Eq. (7) for s
€* < maxgqls — sl
S50 < S
n<n+1
end while
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2.3 Floe-scale parameters

We introduce the ice thickness 2(x) > 0 into our model by
assuming that the elastic strength is proportional to the ice
thickness. Measurements of sea ice elastic moduli are typ-
ically not made at the kilometer scale (Timco and Weeks,
2010). In real ice, scale effects such as ice creep come into
play as we transition from the lab scale to the size of a floe.
In our model, we limit scale effects to those imparted by
variations in ice thickness. These variations in thickness lead
to variations in elastic strength, which may support concen-
trating stress. Hence, such variations contribute to the initia-
tion of fracture. For this reason, relative differences in elastic
strength are more important than absolute values.

We use reference Lamé parameter values from available
sea ice measurements, namely, Young’s modulus E =9 x
10° Pa and Poisson’s ratio v = 0.3 (Timco and Weeks, 2010;
Schulson and Duval, 2009; Dempsey et al., 1999). The cor-
responding Lamé parameters vary spatially due to ice impu-
rities or the ice height i (x); i.e., A and p are given in terms
of E, v, and h(-) as

) = B Ev
(= a2y
E

For the fracture toughness we choose G = 10 Jm™~2 under
the same scale assumptions. Meter-scale measurements of
fracture energy (or apparent fracture toughness in the sea ice
literature (Dempsey, 1991)) vary between 8 and 12Jm~2. To
our knowledge, no floe-scale measurements of G are avail-
able.

2.4 Discretization and solvers

Our implementation is based on the open-source finite-
element software FEniCS (Alnaes et al., 2015). We use lin-
ear finite elements on triangular meshes to discretize u and
the phase-field function s. The scale of fractures occurring in
the model depends on £, and the discretization mesh needs
to be fine enough to resolve these fractures. As can be seen
in Eq. (3), £ multiplies the norm of the gradient, and thus
larger £ results in smaller gradients and therefore smoother
phase-field functions s. The required mesh resolution can be
compared with £ with a one-dimensional solution to Eq. (7)
under simplified assumptions, as in Kuhn and Miiller (2010)
and Wu et al. (2020). This one-dimensional problem assumes
the system is in a steady state, neglects elastic energy, and
models a crack at a single point. We compare the transition
between an undamaged and a damaged state so that it is well
resolved by our mesh points. Mesh sizes are chosen so that
the diffusive regions near cracks contain at least four or five
nodes. The matrix systems occurring upon discretization of
Egs. (6) and (7) are solved using the direct solver MUMPS
(Amestoy et al., 2019).
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3 Fracture behavior of floes with random linear
weaknesses

In this section, we use the phase-field formulation described
in Sect. 2 to study the effect of varying ice thickness profiles
on the fracture behavior of ice floes. First, in Sect. 3.1, we
present a stochastic model to insert regions of thinner ice into
our models, introducing regions for nucleation of fractures.
Then, in Sect. 3.2 and 3.3, we study the statistical behavior
of fractures arising in these models when the ice is subject to
boundary displacements or boundary forces.

3.1 Experiment setup

For the following experiments, we use a 1 m thick, 1km x
1km ice floe domain. Other floe geometries could have been
chosen, but for simplicity we restrict our study to a square do-
main. Since the occurrence of fracture is inextricably linked
to geometry or stress localization induced by material imper-
fections, we introduce random ice thickness variations into
our ice floes. These features model ice impurities and other
imperfections, e.g., those arising when an ice floe has gone
through a fracture and refreezing cycle. Other possibilities
for modeling ice thickness variations include random mod-
els of ice height (Bowen et al., 2018) or surface generation
methods from random field models such as Gaussian fields
(Rasmussen and Williams, 2006). Here, our focus is on frac-
tures that occur along linear features which are not captured
by those methods. We model these features directly with a
simpler model.

Our stochastic model is similar to a model of random lin-
ear features, also called discrete fracture networks (DFNs)
(Min et al., 2004). In these models, a configuration of K
line features (here, we fix K = 10) is parameterized by cen-
ters ¢;, angles 6;, and line lengths b;, where i =1,..., K.
We extend the DFN model by adding an ice height H;. An-
gles, centers, and heights are drawn from uniform distribu-
tions: 60; € [0,27],¢; € 2, and H; € [0, 1]. Random lengths
b; are uniformly drawn from [500, 1500 m]. Each line fea-
ture is spatially smoothed using a Gaussian-like mollifier into
a height function 4; (x). The mollifying function is displayed
in Fig. 1. It is parameterized by the minimum height H;, a
width dy,, and a Gaussian spread parameter o > 0, the latter
two of which we choose as constants d,, = 5 and o = 5. For
a single line feature on a floe of 1 m height, the height field
is given by

2
£(x) ) 7 ©)

hi(x) =1— (1 — Hj)exp <— 2o

where

&(x) = max(0,d(x) —dp).

Here, d(x) is the distance of a point x to the line seg-
ment. This mollification prevents height discontinuities that
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o dm g
1 ¢ <

H;

Figure 1. Diagram of the mollifying function 9 used to define the
ice height /; (x) in the DFN model.

may be difficult to resolve in computations and that might
result in unphysical stresses. We set h(x) = min; s; (x); i.e.,
the ice thickness is the minimal thickness over the thickness
fields generated from the different line segments. The result-
ing height field has the full height of 1 m away from the line
features, is H; along the lines, and takes the minimum height
at line intersections.

Random realizations of this stochastic model can be seen
in the top row in Fig. 3.

In our experiments, we assume the following boundary
conditions on the right side 92, of Q2 and on the horizontal
(i.e., top and bottom) sides 92, of 2:

u=0o0n0%,
on=0o0nJQ.

(10a)
(10b)

That is, the ice floe is held fixed on the right boundary
02, and satisfies stress-free boundary conditions on the hor-
izontal boundaries. On the left side 9€2;, we either pre-
scribe displacements in the normal or tangential direction
(see Sect. 3.2) or apply a normal force until fracture occurs
(see Sect. 3.3). An illustration of this setup is shown in Fig. 2.

In all experiments below, we use £ = 1 and discretize the
ice floe domain using 200 x 200 squares, each of which is
split into two triangles. This results in a resolution of 5m
and about five mesh points to resolve the diffusive phase-
field function in a direction orthogonal to a fracture. In all
experiments in this work, we use the numerical parameters
€ =107% and N = 5000 in Algorithm 1. With these param-
eters, the staggered algorithm typically terminated after be-
tween 1000 and 2000 iterations.

3.2 Fracture arising from boundary displacement

We first study fractures that occur as a result of a prescribed
tensile displacement. In these numerical experiments, we
augment the displacement boundary conditions (10) with the
following condition on the left boundary:

u-n=—D, on-t=0 onod, (11)

where we choose D := 5x1073 m, and £ is the tangential unit
vector. That is, we impose displacement Dirichlet conditions

https://doi.org/10.5194/tc-17-3883-2023
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T 7. 1711
S S S S S

Figure 2. Illustration of experimental setup. The floe is fixed along
the right edge, stress-free along the top and bottom edges, and is
subject to normal stress or displacement along the left edge. The
blue color indicates the floe thickness, where lighter regions are
thinner.

on the normal direction and stress-free conditions on the tan-
gential direction. In Fig. 3, we show examples of resulting
displacement fields and fractures for various samples from
our stochastic ice thickness model. We observe that fractures,
if they occur, tend to follow linear features of thinner ice. In-
terestingly, the second crack profile from the left created a
closed loop. Whether the ice floes fracture completely, for the
given boundary displacement, depends on the height profile.
We observe that we are in a regime where complete fractures
may or may not occur.

A staggered algorithm or any method that computes criti-
cal points of Eq. (3) may terminate in local minima or saddle
points when boundary conditions are too large and stress lo-
calization is absent (Bourdin et al., 2000, 2008; Amor et al.,
2009). Our displacement experiments indicate that we are
near the threshold of fracture, and the inserted weaknesses
initiate cracks by localizing stress. We cannot ensure that Al-
gorithm 1 finds a global minimum, but by being close to the
critical stress needed for fracture to occur and by introducing
inhomogeneities, we avoid two known issues that may lead
to spurious minima.

In separate calculations, we have performed compression
experiments by enforcing a positive normal displacement in
Eq. (11). These experiments led to qualitatively similar frac-
ture patterns to those in the tension experiments displayed in
Fig. 3, so we do not discuss them further.

Next, we consider a follow-up experiment on the ice thick-
ness realizations with shear displacements. Different from
Eq. (11), we now use a shear displacement condition given

The Cryosphere, 17, 3883-3893, 2023
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— 1.0e+00
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—08
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—-01
— 0.0e+00

Figure 3. Top row: random realizations of ice thickness; brighter features correspond to thinner ice. Bottom row: corresponding fractures
under tensile stress, where the phase field s = 0 (red), may arise due to the given displacement of the left boundary in the leftward direction.
Black arrows illustrate the displacement field u over the ice floe. Fracture does not occur for all ice thickness fields.

by

u-t=D, on-n=00ndQ, (12)
where D =5 x 1072, All other boundary conditions are as
above. We observe fracture patterns of higher complexity, in-
cluding fractures into multiple pieces and fractures with mul-
tiple sharp turns; see Fig. 4 for example fracture profiles and
displacement fields. These results demonstrate the ability of
the phase-field model to generate fracture with an intricate
spatial structure under diverse loading and weakness scenar-
ios.

3.3 Critical stress distribution

In our next set of experiments, we combine the boundary
conditions (10) with a normal pulling force condition on the
left edge 02 of the domain; i.e.,

on-n=—L, on-t=00ndQ. (13)
We increase the boundary force L > 0 until the floe com-
pletely fractures vertically. Specifically, for each floe with
a realization from the stochastic ice thickness model dis-
cussed in Sect. 3.1, we increase L in steps of AL :=5kN
and minimize the energy in Eq. (3) using the staggered algo-
rithm. We terminate this incremental loading schedule when
we detect complete vertical fracture, and we call the corre-
sponding value of L the critical stress value. To detect com-
plete horizontal fracture, we check if min(s) < s* = 1073
and ||u|lcc > 1 m are satisfied, where |u| o is the maxi-
mal displacement vector norm. The first condition verifies
that fracture occurs at all, while the second condition de-
tects a large displacement that occurs when the floe com-
pletely breaks vertically, as then the broken-off part is not

The Cryosphere, 17, 3883-3893, 2023

subject to any Dirichlet conditions and is only connected to
the clamped left part of the floe due to the residual stiffness
0 <n <« 1inEq. (3).

Using this approach, we study the distribution of critical
stresses for the various ice thickness fields. In Fig. 5, we show
a histogram of the critical stress at which fracture occurs over
the distribution of ice thickness fields. As can be seen, all
floes fracture at or below 60 kN. Some ice floes fracture at
almost an order of magnitude lower than normal forces, de-
pending on their thickness anomalies.

In Fig. 6a, we study correlations between the critical nor-
mal stress, the average ice thickness, and the orientation be-
tween the pulling force and the linear features of thinner
ice in our stochastic floe model. Note that the average ice
thickness (x axis) correlates with the ice strength, as can be
seen by the larger number of red-shaded dots on the right
of Fig. 6a, indicating larger critical stresses. This correlation
is also visualized in Fig. 6b, which shows a scatterplot of
critical stress vs. average thickness. The correlation is rather
weak, with a corresponding correlation coefficient of 0.39,
though it is statistically significant with a significance level
p equal to 0, with machine precision based on a ¢ test.

Next, we study if the angle between the force direction and
the linear features of thinner ice affects the floe strength. We
define the average absolute value of the sine of the angles of
the linear thinner ice regions as

1 &
o= Z|sm(9i)|. (14)

i=1

Figure 6¢ shows a scatterplot of critical stress vs. a. We ob-
serve a mild tendency of ice floes to endure a larger crit-
ical stress when « is smaller, i.e., when the average an-
gle to the force direction is smaller. The reason for this

https://doi.org/10.5194/tc-17-3883-2023
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Figure 4. The same as Fig. 3 but for shear experiments corresponding to the condition 12 on the left boundary.

Critical Tensile Stress Histogram

40 -

30 4

frequency

N |||||

0 10000 20000 30000 40000 50000 60000
critical stress (N)

Figure 5. Histogram of critical stresses leading to vertical fracture
using 1000 random samples of linear weakness fields.

is that the displacement field largely follows the horizontal
boundary force, and thus the vertical line features result in
stronger stress concentration. The correlation coefficient is
found to be —0.18, which is statistically significant at level
p=3x1073,

To further study which weaknesses are the most important
for floe fracture, we compare floes with all K = 10 linear
features of thinner ice, as described in Sect. 3.1, with floes
that only retain the most vertical feature of thinner ice. In
Fig. 7, the critical stresses for the floes with all linear fea-
tures are plotted against the height of the most orthogonal
feature as blue-shaded dots. The shading indicates by how
much the critical stress increases when the floe only contains
the most vertical feature. The fact that lighter colors appear

https://doi.org/10.5194/tc-17-3883-2023

near the front of the maximal critical stress at the given height
of most of the orthogonal feature indicates that the thickness
of the most vertical line feature limits the stress the floe can
withstand. This holds despite the fact that the most vertical
feature does not generally go through the entire ice floe. We
did not find any striking trends when we compared the crit-
ical stress against the orientation of the most vertical line or
the height of the thinnest crack. Further, the weak correla-
tions in Fig. 6 show that the average thickness and o do not
contain significant information on critical stress.

Additionally, we study the critical stress for ice floes with a
single vertical feature of thinner ice that spans the entire floe
and goes through the middle. In Fig. 7, these critical stresses
are plotted as a red curve against the thickness of the feature.
We find that generally the critical stress of floes with the ver-
tical feature of thinner ice is an upper bound to the critical
stresses of the floes with all K = 10 weaknesses.

4 Outlook and challenges

Here, we discuss the potential use of phase-field models for
individual floe fractures for incorporation into large-scale
DEMs and for analyzing measurements from the 2018 ICEX
field campaign. The following two subsections begin by
outlining the applications, followed by discussing technical
challenges and potential paths forward.

4.1 Fracture in large-scale DEMs

Time-evolving DEM simulations of interacting ice floes
are likely to be more accurate if they include realistic
intermediate-scale fractures. Ideally, such fracture calcula-
tions should not drastically increase the computational cost
of the time steps in a DEM. This creates critical hurdles to
implementing fracture models for floes. Below we discuss
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Figure 6. Each dot in the scatterplot in panel (a) corresponds to a random thickness field, and the color indicates its critical stress of fracture.
Shown on the x axis is the average thickness of each ice floe and on the y axis a measure for the average orientation of the linear ice features.
We also show representative thickness fields corresponding to four of the samples in the scatterplot (top-left and top-right panels). The
scatterplots in panels (b) and (c¢) show weak correlations, approximately 0.39 and —0.18, between the critical stress and average thickness

and between the critical stress and «, respectively.

potential paths forward in order to incorporate a physics-
based fracture model, such as the phase-field model proposed
here, into a DEM.

Existing DEM implementations stimulate sea ice as tightly
bounded particles (Tuhkuri and Polojarvi, 2018; Jirdsek
and Bazant, 1995), polygons (Manucharyan and Monte-
muro, 2022), or polygons joined along edges (Hopkins and
Thorndike, 2006). Contact forces between floes or with land
masses result in stresses that may lead to fracture. Stress
computations can be based on assuming constant stress over
an entire floe or on more detailed floe stress fields computed,
e.g., using FEM simulations. Based on these collision-caused
stresses, a simulation model must decide if a floe fractures
(on the floe scale, fractures are assumed to be instantaneous)
and how, i.e., in how many pieces and in which directions it
fractures.

The Cryosphere, 17, 3883-3893, 2023

Computational cost prohibits running the phase-field frac-
ture algorithm in each time step and for each floe. In a typi-
cal DEM, each floe element requires estimating stresses due
to collisions, which, at most, amounts to a partial differen-
tial equation (PDE) solve. Running the staggered phase-field
solver on each element would require many PDE solves for
each floe, making the straightforward use of the phase-field
fracture model as part of a DEM infeasible. Nevertheless, we
imagine two possible approaches to combining phase-field
fracture models with a DEM: (1) speeding up the computa-
tion using a fracture dictionary generated by a large number
of individual ice floe experiments, potentially interpolating
between fracture experiments using machine learning, and
(2) by detecting the instances when a phase-field fracture
computation is crucial in order to decide whether and how
a floe should fracture. In Sect. 3, we produce a sample study
of fracture profiles in a fixed geometry and with fixed physi-
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H. Dinh et al.: Phase-field ice floe fracture

Critical Stress Difference vs Most Orthogonal Weakness

50 A

IS
o
.

w
o
L

critical stress (kN)

20

10 A

0.0 0.2 0.4 0.6 0.8 1.0
thickness of most orthogonal weakness (m)

0 25 50
difference in critical force (kN)
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cal forcing, experimenting with the first approach. However,
the occurrence and type of fracture likely depend strongly
on floe geometry and involved forces, which would require
a massive sample size. In the second approach, we envision
that fracture nucleation of a single or multiple elements can
be inferred from a large number of experiments. A cheap al-
gorithm could be used to detect when a fracture computation
for a floe is necessary in order to initiate the staggered phase-
field solver or other algorithm.

A particular challenge would be to model leads across
multiple floes, which can be observed in data. Such a be-
havior could for instance be achieved if one floe’s fracture
increases the stresses in the neighboring floe, which, as a
result, also fractures. This likely requires a fracture model
where fractures are initiated through stress localization and
occur in the lead direction. In Sect. 3 we indicate that the
phase field could use contact forces to produce crack profiles
in preferred directions, depending on stresses and ice impu-
rities.

4.2 Towards predicting fracture from ICEX 2018 data

Motivated by the high-frequency displacement data avail-
able from the ICEX 2018 expedition, we are interested in
whether such data can be used to identify fractures when or
even before they occur. The ICEX expedition ran from 8 to
21 March 2018 at Ice Camp Skate in Beaufort Sea, roughly
230km north of Prudhoe Bay, Alaska. Researchers spread
24 reflectors on the ice within 1 km of the camp. The obser-
vation area contained both first-year and multi-year ice. A
high-precision robotic system measured the location of the
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reflectors roughly every 1-3 min. Measurements were taken
both before and after a crack appeared within the observa-
tion area. For a more detailed description of the data and its
acquisition, we refer the reader to Parno et al. (2022).

There are several challenges to using such data to repro-
duce and estimate the time and shape of the physical crack.
First, using position time series data in a quasi-static frac-
ture model as proposed in this paper is not straightforward.
Reflector positions need to be converted to displacements,
and we do not have information on existing large-scale back-
ground stresses or displacements. Second, key data are miss-
ing. The experiments on stressed ice floes in Sect. 3 show that
boundary stresses and ice impurities largely govern fracture.
Thus, the low-resolution ice thickness information and the
fact that only a few displacements and even fewer stress ob-
servations are available may be limiting. Narrow weaknesses
could remain undetected, and stress conditions could change
sharply.

Parno et al. (2022) estimate boundary displacements from
the point displacement measurements under the assumption
of a linear elastic model for ice deformation. Using Bayesian
inference, they conclude that the linear elastic model is un-
likely to explain the observations. They argue that this is due
to the occurrence of a fracture that is not captured by the
linear elastic mode. One could aim at replacing the linear
elastic displacement model assumed in Parno et al. (2022)
with the phase-field fracture model to fit observations. To do
so, one could build on theoretical results regarding differ-
entiability of objectives governed by the phase-field model
(Neitzel et al., 2017), which is useful to find the best-fitting
parameters. However, using the phase-field model to infer the
ice state from observations would make the inference prob-
lem substantially nonlinear and thus challenging. Another is-
sue, which could also be incorporated in the inference prob-
lem, would be to select values for the elastic moduli and frac-
ture toughness from Sect. 2.3 that are appropriate for the spa-
tial scales of the measurements. We believe that addressing
these challenges is an interesting avenue for future work that
would allow for coupling phase-field models with inference
methods to predict sea ice fracture from observational data.

Code availability. Our code implementation is available at
https://doi.org/10.5281/zen0do.8290728 (Dinh and Giannakis,
2023).

Data availability. Data reproducing the floe fracture experi-
ments in this study can be generated by running the code
at https://doi.org/10.5281/zenodo.8290728 (Dinh and Giannakis,
2023). Generated data are also available from the corresponding au-
thor upon request.
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